

Newsletter

Number 13, - December 2025

Newsletter Editor

Lianet Mendez-Monsanto, Universidad Carlos III de Madrid, Spain

COST INTERACT Chairman

Laurent Clavier, IMT Nord Europe, France

Editorial Board

Vittorio Degli Esposti, Mate Boban, Diego Dupleich, Wei Fan, Marco Di Renzo, Joonas Kokkonemi, Ana Garcia Amada, Alister Burr, Yang Miao, Carsten Smeenk, Hamed Hamadi, Konstantin Mikhaylov, Kamran Sayrafian, Slawomir Ambroziak, Wout Joseph, Conchi Garcia-Pardo, Adrian Kliks, Shrief Rizkalla, Golsa Ghiaasi, Raheeb Muzaffar, Periklis Chatzimisios, Fernando José Velez, Greta Vallero, Marco Skocaj, Margot Deruyck, Krzysztof Cichoń, Laurent Clavier, Chiara Buratti, Carles Anton-Haro

EDITOR'S ADDRESS

Dear reader,

It is an honor to share the 13th and final edition of the INTERACT newsletter. First, I would like to express my gratitude for the opportunity to serve as the editor for this year, as well as to thank all partners for their contribution.

In this issue, you will find special closing remarks by Laurent Clavier and Chiara Buratti, along with photos from the 12th MC & Technical Meeting held in Lille, France. As usual, we also share highlights from the final meeting, including updates and concluding remarks from all working groups and vertical teams.

We are pleased to feature two engaging interviews: Prof. Fernando Velez from Instituto de Telecomunicações and UBI (Portugal), as a senior researcher,

Lianet Mendez-Monsanto

Universidad Carlos III de Madrid, Spain

and Amélia Struyf from Université Libre de Bruxelles (Belgium), as a young researcher. In addition, Bernardo Galego from Instituto Superior Técnico (Lisbon, Portugal) shares his STSM experience following his stay at Fondazione Ugo Bordoni in Bologna, Italy. Finally, this edition includes four highlighted technical works presented during the meeting.

I hope you enjoy this final issue, and I would like to express my personal appreciation for the INTERACT team and the impressive work achieved during these years.

COST CA20120 ACTION

INTERACT

IN THIS ISSUE:

- 1 - EDITOR'S ADDRESS
- 2 - FINAL MEETING REMARKS
- 3 - CHAIRMAN'S ADDRESS
- 4 - INTERVIEWS
- 5 - SELECTED SCIENTIFIC TOPICS
- 6 - LAST MEETING'S HIGHLIGHTS
- 7 - STSM TESTIMONY
- 8 - WOMEN IN INTERACT
- 9 - FACTS & FIGURES

ABOUT COST

This COST Action aims at contributing to the societal transformation, by developing the next generation of radio communication networks, 6G.

The Intelligence-Enabling Radio Communications for Seamless Inclusive Interactions (INTERACT) vision is to go beyond the capabilities of the 5G and to make the radio network itself intelligent, meaning aware, adaptive and parsimonious.

Challenges include:

- 1) Fundamental research in the fields of antennas and propagation, signal processing and localization, network architectures and protocols, to design intelligent-enabling radio communications;
- 2) Exploitation of Machine Learning tools for the implementation of many aspects of this network intelligence;
- 3) Collecting real-world data and making them available to the research community by building the INTERACT datasets.

This COST action started in October 2021 and ends in October 2025.

12th MC & Technical Meeting - Lille 2025 (Final Meeting)

October 1st, 2025, Lille (France) - Newcomers' photo.

Last INTERACT Meeting and Workshop

The **final INTERACT meeting** took place from Sep. 29th to Oct. 2nd in Lille, France, hosted by Prof. Davy Gaillot and Prof. Laurent Clavier at the ENSAM "Arts et Métiers" Lille campus. In addition, on Sep. 30th, **INTERACT and the French PEPR Future Networks Program co-organized a one-day workshop**, featuring inspiring talks. Partners engaged in rich technical discussions and shared a warm farewell, complemented by a visit to the city and a memorable dinner aboard a river boat.

Photos of the last INTERACT meeting and Workshop in Lille, 2025.

CHAIRMAN'S ADDRESS

As we reach the last INTERACT newsletter, we want to thank you all for this exceptional journey. Over these past years, we've shared 12 meetings, 8 Training Schools, 683 Technical Documents, 28 Short-Term Scientific Missions, and we've written three white papers and an open-access book, among many other things. But the most important achievement is not counted in numbers: we have strengthened a community that has been growing for more than 40 years.

Gratitude also goes to Flaminia and Natascia, the tireless behind-the-scenes natural-intelligence agents who kept everything running smoothly, allowing the Action to progress seamlessly.

With the acknowledgments made, it is worth reflecting on what this project has left us—scientifically and as a community. Our daily experience reminds us how easily radio networks are taken for granted. They are simply there, they work, and we rely on them. But this apparent simplicity hides the continuous, patient work of many people who dedicate their time, expertise, and passion to making these networks more efficient, more responsible, and more useful for society. Such progress is never automatic: it demands long-term commitment, shared vision, and the collective effort that has defined our Action.

Reaching this stage is not an ending, it is the continuation of a long story, and we must continue to deploy the necessary efforts to achieve our goals. Unlike the networks we design, we humans can afford to dissipate a little energy here and there, for example, enjoying a drink together, energy that has no purpose, since we are powered by renewable energy and, fortunately, biodegradable.

As we close this chapter, we thank each of you for the science, the collaboration, and the spirit. The journey continues and it still matters, now more than ever.

Laurent Clavier & Chiara Buratti

INTERVIEW WITH A SENIOR RESEARCHER: FERNANDO JOSÉ VELEZ

ASSOCIATE PROFESSOR INSTITUTO DE TELECOMUNICAÇÕES (IT) AND UNIVERSIDADE DA BEIRA INTERIOR

Fernando José Velez, Ph.D. in Electrical & Computer Engineering, is an associate professor at UBI and senior researcher at Instituto de Telecomunicações. His work spans toward 6G, wearable technologies, spectrum management, and energy-efficient networks. He has led numerous projects, supervised researchers, and contributed to European research and cooperation initiatives.

What are your favourite areas of interest and research? Leveraging the properties of stochastic processes to enhance and optimize communication networks, alongside characterizing wireless medium propagation for next-generation terrestrial and non-terrestrial communication systems across diverse applications and business verticals.

What is the “next big thing” in the wireless communication area? The next big thing in wireless communication will likely involve nanomaterial-based devices (or devices at the nanoscale) for smart radiation, propagation, and relaying. Additionally, the integration of smart properties into environmental obstacles, buildings, and receivers will enable broader-scale communication in higher frequency bands, ranging from millimetre wavebands to sub-THz frequencies.

Considering the innovations in the scientific world in the last 20 years, which was the most remarkable one, which one didn’t get the attention it deserved, and which one finished with a “dead end”? While 4G revolutionized mobile communication by enabling users to achieve what was once only imagined, 5G systems have surpassed even those initial visions. WiMAX, based on the IEEE 802.16 standard, played a crucial role in driving interest in 4G research and development and laid the foundation for LTE's success, yet it did not receive the recognition it deserved. On the other hand, ETSI HIPERLAN was a promising proposal that failed to achieve its potential due to the 3G crisis caused by disastrous licensing auctions.

What was your motivation to be part of COST INTERACT? I was motivated by the willingness of continuing and enhancing long last cooperation with researchers in the field of spectrum management in smart cities and buildings, and novel architectures and protocols for wireless body sensor and vehicular communication networks, as well as organizing seminars, workshops and training schools whilst mentoring younger researchers in the initial phase of their careers.

What was your motivation to become a researcher? My passion for electronics, telecommunications, and physics, combined with a strong desire to push the boundaries of knowledge in wireless communications.

My favourite book, music, movie, are... My favourite book is *Angola: Anatomy of a Tragedy* (*Angola: Anatomia de uma Tragédia*) by Silva Cardoso. I love the music of Zucchero Fornaciari, and among many other movies, I always enjoy watching *The Sound of Music*. I also enjoy French TV series, such as “*Un Village Français*”.

I’m most passionate about... I’m most passionate about sports, especially athletics and volleyball, as well as listening to music.

My favourite holiday is... My favourite holiday is spending time with my family in Sesimbra and Portinho da Arrábida, Portugal. I also have fond memories of holidays in northern Galicia, Spain, during my university years, and I hope to return there soon.

In few words, I consider myself to be... I consider myself to be highly persistent in pursuing my goals.

What is your country well known for? My country is well known for its sailing skills and the 1001 ways to cook codfish (bacalhau).

My favourite or personal quote is ... While I do not have a specific favourite quote, I resonate with 'Do not be afraid,' by Pope John Paul II.

Is there anything else you like to share? Contributing to the COST actions on wireless and mobile communications research has always been a rewarding experience, greatly enriching my career and professional development.

INTERVIEW WITH A YOUNG RESEARCHER: AMÉLIA STRUYF

PHD CANDIDATE UNIVERSITÉ LIBRE DE BRUXELLES

Amélia Struyf is a PhD researcher at the Université Libre de Bruxelles. Since September 2023, she has been working on signal processing for satellite communications. Her research focuses on millimeter-wave antenna arrays with hybrid analog-digital architectures.

What are your favourite areas of interest and research? My main areas of research are signal processing and satellite communication. I also really enjoy working with different types of hardware and setting up new experiments.

What was your motivation to become a researcher? The opportunity to solve complex problems, explore new ideas and to gain a deep understanding of a specific topic.

What is the “next big thing” in the wireless communication area? I believe that ISAC will become increasingly important in the coming years. I also hope that the trend toward green and energy-efficient communication will continue to grow, as sustainability has become a crucial topic in research and technology.

Considering the innovations in the scientific world in the last 20 years, which was the most remarkable one, which one didn’t get the attention it deserved, and which one finished with a “dead end” ? It’s hard to name just one innovation given the diversity of scientific fields, but the continued progress in transistor miniaturization over the past 20 years has been really impressive, shaping nearly every device we use today. Another major breakthrough is CRISPR-Cas9, used for gene editing. As for a dead-end technology, I’d say hydrogen cars, but I think they’ll could regain popularity in the future.

How did you became involved in COST INTERACT (or any of the previous Actions)? My supervisor, François Quitin, was already involved in COST Actions and encouraged me to join as well.

What was your motivation to be part of COST INTERACT? It’s a great opportunity to exchange ideas and network with other researchers.

My favourite book, music(ian), movie, TV-series are ...

My favourite authors are Margaret Atwood, Mieko Kawakami, and Terry Prachett. My favourite movies are Perfect Days and The Truman Show. And, my favourite musicians are The Lumineers at the moment.

I’m most passionate about ...

I’m really passionate about fencing (especially épée) and rock climbing. I also really enjoy learning new languages.

My favourite holiday is ...

I enjoy long hikes in the mountains. I’m also very passionate about Japanese culture and love exploring Japan, visiting its cities as well as its countryside and natural landscapes.

In few words, I consider myself to be...

Enthusiastic and curious.

What is your country well known for? Belgium is well known for its chocolate, waffles, fries and beers.

My favourite or personal quote is ...

“What you do makes a difference, and you have to decide what kind of difference you want to make.” Jane Goodall

HIGHLIGHTS FROM THE LAST MEETING

WG1 - Radio Channels

During the meeting in Lille, WG1 had 12 TDs, 4 WG1.2 TDs and 4 joint WG1/VT1 TDs. TDs presented in WG1 session were about: experimental studies on propagation in confined (indoor and vehicular) environments; channel sounding for 6G and (sub)-THz bands; cell free MIMO measurements; and massive or gigantic MIMO and CSI compression techniques. TDs presented in WG1.2 session were about RIS-assisted transmission techniques; stacked intelligent surfaces; and RIS for O2I propagation.

The WG1 chapter of the final book is already completed, with final adjustments and information about TDs presented in Lille included before final publication. The chairs of WG1 and its sub-groups WG1.1 and WG1.2 expressed their appreciation for the collaboration throughout the Action.

WG2 - Signal Processing and Localization & SWG2 ISAC

At this meeting, 14 WG2 TDs were presented, 3 of them together with WG1 about channel modelling and estimation. These works close a successful collaboration in WG2 around topics such as cell-free massive MIMO, waveform design, coding, multiple access, and a variety of algorithms for beamforming, detection, and localisation, also looking at implementation issues and integration within the ORAN. AI/ML tools were often used to enhance the capabilities of more classical signal processing. It was notable that a substantial number of the TDs related to sub-THz or mm-wave. Sub-WG2.1 ISAC had a joint session on ISAC and localisation. Two TDs were based on tracking algorithms, where one of them was the result of an STSM. Other topics were RCS modeling of UAVs in ISAC channels, and the discussion of the idea of using PRACH in 5G NR for sensing.

As part of the efforts to train young researchers, one of them volunteered to chair one of the WG2 sessions. In reviewing the work of WG2 over the 4 years of the Action, the co-chairs thanked all those who had attended and contributed to the WG, and remarked on the extent to which ML and other data-driven approaches had been incorporated into the work discussed, becoming another important tool in signal processing for communications and localisation.

WG3 - Network Architectures and Protocols

Three TDs were presented during the WG3 session at the final COST INTERACT meeting in Lille, whose topics were highly relevant to the overall action. Two of the TDs continued work presented at earlier meetings, while one resulted from an STSM. Specifically, the first TD focused on 3D networks and drone communications, presenting early experimental results on implementing BLE-based cooperative awareness for miniature UAVs. The second TD introduced an analytical framework for evaluating hybrid network-sharing strategies and discussed insights derived from its application to real-world mobile network datasets. The final TD addressed network digital twins and their integration with non-public networks. The relaxed schedule fostered a highly engaging and insightful discussion.

The chairs would like to thank all WG3 members for their active participation, contributions, and volunteering efforts—especially those who served as editors for the final book section—and hope to meet everyone again in future collaborations.

VT1 - Health and Well-Being & SWG EMF

During the INTERACT 12th MC and Technical Meeting, VT1 held one session with 20 attendees. In this session, 4 TDs were presented. The first TD discussed characterization of a 2X2 MIMO radio channel for wireless capsule endoscopy application at 915 MHz. The second work presented a methodology for the detection of odor via deep neural networks, with applications in food safety, environmental monitoring and medical diagnostics. The third TD focused on the optimisation of time and distance thresholds in automatic exposure detection as well as the sensitivity of the optimised parameters with Bluetooth ranging error. Such optimised thresholds could further enhance the effectiveness of automatic exposure notification in contact tracing systems during pandemics. Finally, the fourth work presented the results of a study on propagation channels for brain telemetry using flexible antennas.

Regarding the SWG EMF, the group had one EMF session with 4 TDs related about exposure simulations and measurements for 5G and 6G, and a joint session with WG1 with 2 TDs about EM field reconstruction. The TDs investigated 5G exposure measurement methodologies (model to estimate future 5G EMF exposure accounting for utilization, and EMF exposure after 6 years), 6G exposure (RIS exposure in greenhouses), and EMF compliance for 5G Massive MIMO antennas.

After the sessions, there was a discussion about the COST book and planned joint measurement campaign in several countries regarding the exposure assessment measurement duration. The group also reported dissemination activities such as the EMF INTERACT convened session (consisting of 2 sessions) at EuCAP 2026 with 10 papers next march 2026.

VT2 - Transportation

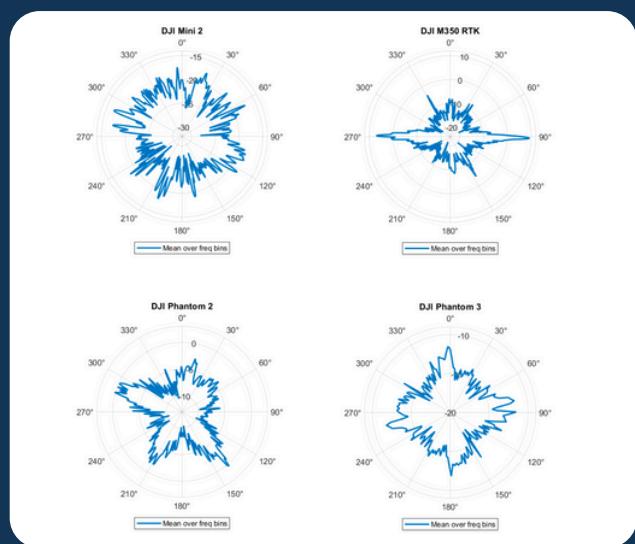
This meeting had no VT2 TD-based sessions, but one session for the white paper. VT2 group finalized the book chapter and were working on finalizing the white paper. The group held a hybrid in-person and online session at the meeting in Lille to make a final discussion on the structure of the white paper, which is already published on INTERACT's website, available [here](#).

VT3 - Industrial Automation

Although no TDs were presented during the final meeting in Lille, VT3 took the opportunity to reflect on the work carried out throughout the Action. Over the past years, VT3 activities have addressed key topics in industrial automation, including wireless sensing and communication in industrial environments, ISAC at sub-THz frequencies, and the application of AI and machine learning to industrial processes among other relevant topics. The contributions and engagement of all participants over the duration of the Action are gratefully acknowledged.

VT4 - Smart Building and Cities

VT4 did not hold TD-based sessions at the final meeting. As this marked the conclusion of the Action, the group acknowledged the collective work developed over the years on smart buildings and smart city scenarios. VT4 contributions have spanned radio channel characterisation, propagation modelling, energy efficiency, data-driven approaches for future wireless networks and more. The sustained involvement and valuable contributions of all VT4 members throughout the Action are sincerely appreciated.


SELECTED SCIENTIFIC TOPIC:

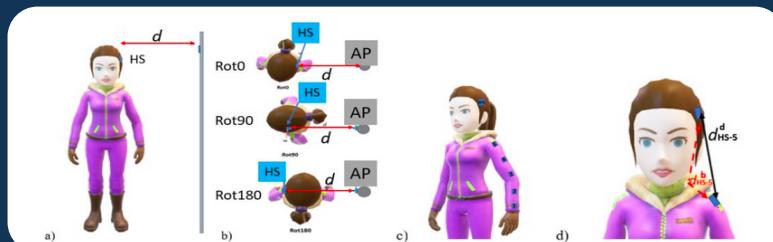
ANGULAR PROPERTIES OF UAV RCS FOR ISAC CHANNEL MODELING

Existing channel models were designed primarily for point-to-point communications and cannot fully describe the angular and statistical behaviour of sensing targets like unmanned aerial vehicles (UAVs). With the advent of integrated sensing and communications (ISAC), this remains a fundamental challenge.

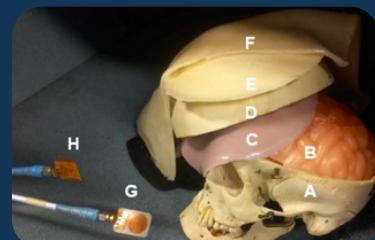
This work presents a measurement-driven framework for modelling UAV targets in ISAC channels by linking their radar cross section (RCS) variation to angular dynamics. Using extensive multi-band measurements from four UAV platforms, the study shows that measured RCS across azimuth is best described by a log-normal distribution, outperforming traditional Rician, Gamma, Nakagami, and Weibull models.

One of the notable observations is the very rapid angular decorrelation of UAV RCS, typically within only 2-3 degrees, observed consistently across a variety of UAV models and frequency bands. To capture this behaviour, several autocorrelation functions are proposed. In addition, the work derives and experimentally validates the angular level-crossing rate (ALCR) and angular notch width (ANW). These angular properties highlight important aspects of the second-order statistics of randomly fluctuating targets for geometry-based stochastic ISAC channel modelling.

Measured RCS of different UAV models.


SHRAYAN DAS, PEIZE ZHANG, VEIKKO HOVINEN, AND PEKKA KYÖSTI

Contact person Shraya.Das@oulu.fi


SELECTED SCIENTIFIC TOPIC:

ON THE STUDY OF RADIO CHANNELS FOR BRAIN TELEMETRY USING FLEXIBLE ANTENNAS

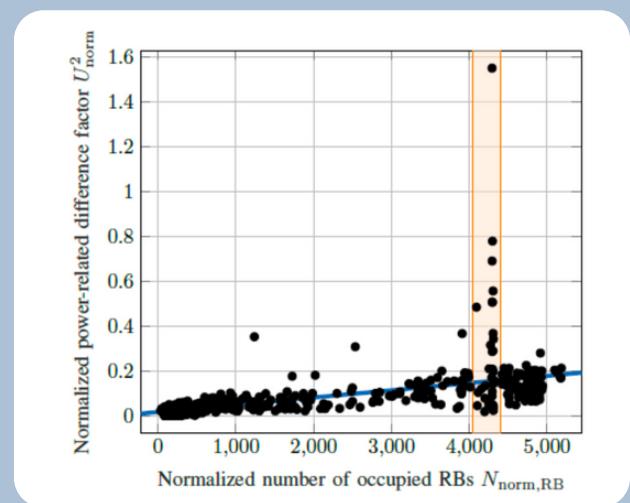
Wearable medical technologies are advancing toward greater comfort and integration with the human body. Flexible antennas are a key enabler for these technologies allowing for continuous and unobtrusive health monitoring. This study addresses the characterization of in-body, on-body, and off-body radio channels using a flexible antenna, with a particular focus on brain monitoring and brain-computer interface (BCI) applications.

a) Antenna location on the volunteer's head; b) Off-body measurement scenarios with rotations, c) Antenna locations 1 through 5 for on-body measurement scenarios; and d) LOS and surface distances in the on-body scenario.

Measurement setup for in-body communication research, A: Human skull, B: brain phantom, C: dura phantom, D: top of the skull, E: fat phantom, F: skin phantom, G: flexible on-body and H: implant antenna.

A compact ultra-wideband (UWB) flexible antenna (2 × 3 cm) operating across 3.1-10.6 GHz UWB and 2.4 GHz ISM bands is used for the study. Measurements were conducted in both anechoic chamber and office-like environments to capture realistic channel behaviour. Three measurement scenarios were explored: (i) in-body: communication between a small implant antenna placed inside a human skull model and a flexible on-body antenna on the surface of the head; (ii) on-body: communication between a head-worn antenna and an on-body device placed on the shoulder, arm and wrist; and (iii) off-body: communication between a head-worn device and an external receiver placed at various distances from the user. Results show that the flexible UWB antenna maintains stable performance across all considered scenarios. These results highlight the feasibility of flexible antennas for the next-generation wearable medical devices.

MARIELLA SÄRESTÖNIELI, KAMRAN SAYRAFIAN, TEEMU MYLLYLÄ, JARI IINATTI


Contact person mariella.sarestoniemi@oulu.fi

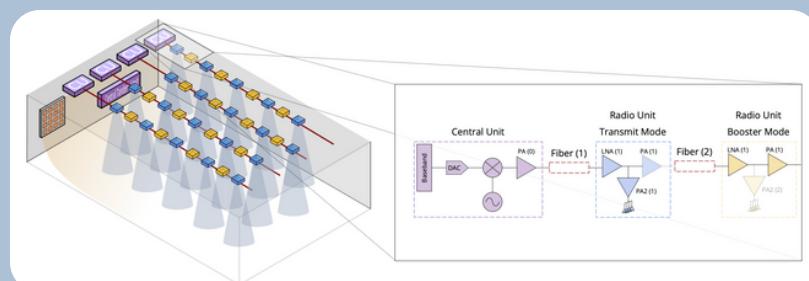
SELECTED SCIENTIFIC TOPIC:

DEVELOPMENT OF A MODEL TO ESTIMATE FUTURE EXPOSURE WITH INCREASED UTILIZATION OF MOBILE RADIO BASE STATIONS

As mobile networks expand toward higher frequencies and wider bandwidths, understanding how these changes influence human electromagnetic exposure is increasingly important. With the global deployment of 5G NR in the sub-6 GHz range and the introduction of massive MIMO (mMIMO) and beamforming technologies, base stations can dynamically concentrate energy toward active users, potentially altering instantaneous exposure patterns in complex ways. While previous studies cover the current exposure to base station emissions at a typical user behaviour of a base station, this work addresses a more practical question: how exposure varies with actual network utilization and how it might change as mobile bands are reorganized or expanded in the future.

This study conducted controlled field measurements at two base stations equipped with mMIMO antennas, monitoring all active LTE and 5G frequency bands under varying traffic loads. The figure shows the power-related difference factor derived in the work. For LTE bands, this factor exhibited a clear linear relationship with the number of occupied resource blocks (RBs), indicating that exposure scales proportionally with traffic load. This finding suggests that future exposure levels could be estimated from current signalling-only measurements, providing a practical method for exposure modelling as capacity continues to evolve. However, the 5G mMIMO results show that beamforming breaks any simple linear relation between utilization and exposure.

Power-normalized difference factor U_2 over the bandwidth-normalized number of occupied RB with a linear fitting for all LTE and 5G bands. The factors of the 5G measurements in case of two simulated high-throughput users within the cell are highlighted in orange.


ANNA-MALIN SCHIFFARTH, THANH TAM JULIAN TA, JÖRG PAMP, DIRK HEBERLING

Contact person
schiffarth@ihf.rwth-aachen.de

SELECTED SCIENTIFIC TOPIC:

DISTRIBUTED DEPLOYMENT AND DUAL-FREQUENCY CONCEPTS TO STRENGTHEN SUB-THZ WIRELESS SYSTEMS

The promise of sub-terahertz (sub-THz) communications lies in its enormous bandwidth, enabling ultra-high data rates, precise localization, and advanced sensing applications. However, its practical deployment faces severe challenges, such as high path loss, strong susceptibility to blockage, and demanding hardware constraints. In this work, researchers from KU Leuven, Chalmers University, Lund University, Linköping University, and Ericsson propose a new paradigm for robust sub-THz wireless systems.

A dense deployment of distributed low-complexity sub-THz radio units (RUs) and sub-10 GHz with dual-frequency operation. Block diagram of the sub-THz fiber-based infrastructure (the stripe), consisting of a central unit (CU), and multiple RUs connected with polymer microwave fibers (PMFs). As detailed in the close-up, a RU can be configured to transmit over the air (blue) or amplify the signal (yellow) to be carried further over the PMF to account for the losses.

Contact person fredrik.tufvesson@eit.lth.se

The authors envision a network of low-complexity radio units (RUs) densely distributed and connected via polymer microwave fibers (PMFs), a cost-efficient radio-over-plastic-fiber approach. Sub-THz signals are transmitted through these lightweight fibers to nearby RUs, which either radiate or amplify the signal in a daisy-chain configuration. This layout reduces path loss, blocking, and simplifies beam steering, turning fragile sub-THz links into stable local "spotlights" of coverage. Additionally, dual-frequency tandem operation is proposed, integrating the sub-THz system with a sub-10 GHz system that provides control signalling and a robust fallback solution for the sub-THz system.

This proposed tandem architecture can open up the full potential of sub-THz technology and paves the way to cost- and energy-efficient, high-performance, real-time connectivity in dynamic environments.

LIESBET VAN DER PERRE,
GILLES CALLEBAUT, THOMAS ERIKSSON,
MURIS SARAJLIC, CHRISTIAN FAGER,
FREDRIK TUFVESSON, BUON KIONG LAU,
AND ERIK G. LARSSON

AVAILABLE GRANTS IN THE INTERACT ACTION

STSM TESTIMONY

Investigating on EMF measurements to perform temporal comparisons and estimate the radiation contribution of mobile communications systems

Bernardo Galego

Instituto Superior Técnico, Lisbon, Portugal

Host institution:

Fondazione Ugo Bordoni, Bologna, Italy

I am a PhD student, working on EMF exposure under the supervision of Professor Luís M. Correia. In September 2025, I had the opportunity to undertake a Short-Term Scientific Mission (STSM) at Fondazione Ugo Bordoni, under the guidance of Doctor Simona Valbonesi and working with Doctors Marina Lotti, Andrea Garzia and Paolo Grazioso. There is a long history of collaboration between IST and FUB, seeing that both research EMF exposure for some time, and so the opportunity to do this STSM emerged at a COST meeting, in a conversation with Paolo Grazioso.

The objectives of this STSM were threefold: to perform EMF measurements in public spaces in Bologna to be able to compare the results with a measurement campaign carried out in the same locations in 2019; to perform narrowband measurements in order to estimate the radiation contribution of each mobile communications system; and to perform 30-minute measurements to further my study on the time-dependence of EMF.

Performing these measurements was very useful to me and to my work. Not only it gave me more knowledge into how to properly perform on-site EMF measurements, it also allowed me to have more data to further my work in several aspects: it complements a temporal comparison dataset that I had measured in Lisbon at the beginning of 2025, it gives me more information to be able to more accurately state the contribution of each system to the total EMF level and it furthers my dataset to compare 30-minute measurements with 6-minute ones, yielding stronger results.

In addition to the great dataset that I gathered, I presented this STSM's work as a TD at the final COST INTERACT meeting, in Lille.

Together with the work that I performed in Lisbon, I will soon submit a paper in a suitable journal about the temporal comparison and mobile communications system contribution in both countries. The 30-minute measurements will take part in a greater effort that is being done at an European scale, by myself and Professor Luís. This work also strengthened the collaboration between IST and FUB.

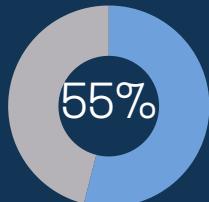
I strongly recommend doing an STSM, if such opportunity arises. Not only is it great for furthering your own research and the research of the host institution, it is also a fantastic opportunity to meet like-minded people that research the same topic; to learn from them and have them learn from you. I also enjoyed very much the opportunity to explore beautiful Bologna and experience a different culture and way of life. In times where collaboration with other researchers occurs mostly in an online fashion, STSMs give an excellent opportunity to remind ourselves that behind all research and papers there are people you can meet, talk to and learn from.

WOMEN IN INTERACT

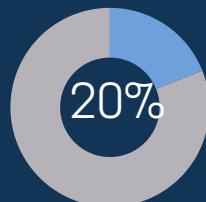
Throughout INTERACT, partners have shown a strong commitment to addressing the gender gap, which remains significant, as reflected in participation figures across meetings. To this end, INTERACT has promoted initiatives aimed at supporting women in the field, including podcasts highlighting the work of female researchers and the Mentorship Program. Female and early-career researchers have also been supported through Visibility Booster Grants (V ро) and inclusive target countries (ITC) grants. In addition, regardless of gender, young researchers have been encouraged to co-chair sessions at meetings, fostering the development of leadership and organizational skills. Overall, these initiatives contribute to a more inclusive and supportive research community.

FACTS & FIGURES

Signatory Countries:


COST Cooperating Members:

COST Partner Members:


International Partners:

Institutions (University/ Industry/ Research Infrastructures/Enterprises) currently participating:

Young Researchers

Women

Presented TDs in Lille

Meetings per year

INTERACT Action's Members

Participating last meeting

104

Training School/Day completed

