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Applications
• eXtentded Reality (XR)
• Advanced gaming
• Virtual reality
• Augmented reality
• Holography

• Extreme coverage extension
• For emergency communication
• For operation in remote areas 

(e.g., mining operations)
• Remote ship operation
• Covering underserved areas
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Applications
• Telemedicine
• From online consultation 

to remote robotic surgery

• Industry 4.0
• More efficient industry by 

fast reconfiguration
• “live” guidance to workers on 

what to do
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Applications
• Autonomous Driving
• Reduction of accidents
• Reduction of traffic jams
• Elimination of “lost” time

• Smart City
• Higher efficiency
• Reduced energy consumption

and pollution
• Automatic reporting of issues
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From 5G to 6G

• New applications drive requirements for new approaches

[with Tataria et al. 2021, Proc. IEEE] 
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Increase data rate: new spectrum in THz
THz communication promises and challenges
• Promises

• Large amounts of fallow spectrum at >100 GHz
• Frequency regulators have started assigning to users
• Large number of antenna elements fit into small form factor
->  Extremely high data rates and high user densities
enabling applications not feasible with other technologies 

• Challenges
• Higher attenuation and other difficult propagation channel conditions
• Low-cost semiconductor technology and transceiver design
• Are we hitting the limits on array sizes?

• For constant antenna area, number of antenna elements needs to increase
• For increased bandwidth, noise power increases
• -> Arrays at THz need many more elements
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THz channels measurements
• Indoor channels
• Pioneering work by Kuerner et al
• Strong specular reflections in office
• Long delay spreads in corridors

• Outdoor microcellular channel (1 GHz BW) 
• Pathloss coefficient low (~2) even in NLOS
• 1 Gbit/s possible over 100 m
• High sensitivity to shadowing
• Delay spread can be 10s of ns

• Even for directional DS
• Need equalizer

• Large number of clusters
èLarge angular spread

8

NLOS

[Molisch et al. 2024, WCM],  [with Abbasi et al. 
2022, 2023] [with Gomez et al. 2022]A. F. Molisch, B5G components
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THz channel modeling
• Statistical models
• Traditional COST approach: 

inter-cluster and intra-cluster

• Point cloud simulations 
(Haneda et al.)
• Must model fine details, 

including diffuse scattering, 
blockage of first Fresnel zone

• Must improve efficiency of ray 
tracing, e.g., visibility matrix 
(Degli’Esposti et al), adaptive 
point cloud density
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[with Koivumaki 
et al. 2024]
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Hybrid beamforming
• Combine analog with digital beamforming to reduce number of RF chains without 

significant performance loss

• Invented in early 2000s at MERL: [Molisch and Zhang 2004], [with Zhang et al 2005] 
(using instantaneous CSI), [with Sudarshan et al. 2006] (using average CSI).

10A. F. Molisch, B5G components



Hybrid beamforming research still ongoing
• Different structures and their performance
• Full array vs array of subarrays vs intermediate
• Combination of arrays and switches 
• JSDM Joint Spatial Multiplexing and Diversity
• JPTA Joint Phase Time Arrays 

• Adaptation algorithms in multi-user setting
• Grouping/scheduling of UEs critically impacts performance

• Efficient channel estimation 
• Energy minimization
• Combination with low-resolution ADCs
• Recent trend: holographic MIMO
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Increase datarate: distributed mMIMO
• Origin in base station cooperation, 

network MIMO, CoMP, Cloud RAN,…
• Elimination of intercell interference
• Enhanced macrodiversity
• Many new theoretical problems
• Capacity: often handled with stochastic 

geometry
• Combination algorithms (MRC, ZF,…)
• Limited front haul capacity
• Scalability: dynamic AP association
• …..
• and new channel models

12

[Demir et al. 2021]
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How to measure distributed mMIMO channels
• Use of drone to measure massive distributed AP arrays

13

[with Choi et al. 2022 WCNC]

Measurement data are publicly available

Virtual array moved by drone allows measurement of very large distributed AP arrays
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Distributed mMIMO channel model
• Standard model: 

• Euclidean power law
• Independent shadowing from APs

• Measured results
• Pathloss depends on street 
• Shadowing along trajectory for both AP 

and UE
• Shadowing correlated between APs

• -> new channel model: CUNEC
• Pathloss, shadowing correlation depends 

on whether APs  are in the same or 
different streets

• Transition regions must be modeled
• Parameterization from measurements 

and/or ray tracing

14

[with Choi et al. 2022 Globecom]
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Increase data rate: OAM

!"A. F. Molisch, B5G components
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o Intensity null at the center
o Phase spirals ‘l’ times over 
distance of one wavelength

‘No OAM’

Orbital Angular Momentum

[Yao, et al. 2011 Adv. in Opt. & Phot.

OAM well suited for multiple data streams on point-to-point LOS links



Block diagram for OAM multiplexing
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Sample results OAM
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• Sources of intermodal 
interference
• Imperfect phase 
 plates/detectors
• Radial offset
• Finite aperture
• Turbulence
• Multi-path
• Blockers in path

[with  Minoofar, et al., 2021].

More modes from 
2-D Laguerre-Gauss



Increased data rate: RIS
• Reconfigurable intelligent surface

18

[Liu et al. 2022]

• Advantages
• No conversion to baseband
• Relatively simple control

• Drawbacks
• Required real estate larger than 

for relay 
• Still needs power supply
• More complicated processing 

and channel estimation
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OTFS
• OTFS is a modulation in the delay-Doppler domain (dual to OFDM)

                                               Convolution of transmit symbols with channel spreading function

Transmitted OTFS
QAM Symbols

𝜏 𝜈

Delay-Doppler 
Impulse Response

𝜏 𝜈

∗ =
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• Modulation in delay-
Doppler domain “sees” a 
channel that is stable and 
identical for all symbols 

• Equivalently, novel 2D 
basis functions spread 
information symbols over 
both time and frequency

• Full diversity
• Averages out channel 

fluctuations, and thus 
does not need CSIT

[with Hadani et al. 2017]
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OTFS interpretation
• OTFS waveform Implementation as overlay

• Identical to Doppler pulse radar
• Well suited for joint communication and sensing
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ML for propagation
• Can be divided into

• Real-time channel prediction for system 
operation
• More important with schedulers, beamformers, etc., 

becoming more complex
• Coverage prediction without ray tracing

• For denser networks, CF-mMIMO, etc.
• Channel modeling

• Potentially more accurate than statistical models

• All learning strategies require 
understanding of the physics of 
propagation
• Selection of neural network structure
• Preprocessing of data
• Training strategy and amount of required data
• Data augmentation

A. F. Molisch, B5G components 21

[with Burghal et al. 2023]

[with Lee et al. 2023]



ML for other application
• ML is everywhere
• Best application for:
• NP-hard problems
• Operation where simplified analytical models don’t hold

• Real channels
• Nonlinearities
• Stochastic processes with non-Gaussian characteristics and/or non-ideal ACF

• Incorporate physics and known analytical solutions as much as possible
• Examples
• Antenna selection
• Modulation/coding
• Scheduling
• Routing
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V2X
• Ongoing since 2000, battle 802.11p vs 3GPP
• Now increased emphasis on high throughput and JCAS
• Challenges
• PHY: beamforming, channel estimation, channel extrapolation
• MAC: scheduling (especially for V2V)
• Networking: fast handover

• Research avenues
• Machine learning at all layers
• Stochastic geometry (mixture of line and point processes)
• New MAC formats 
• ….

A. F. Molisch, B5G components 23
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3D networks
• Coordination of
• Transmission
• UAV trajectories (for both efficiency 

and lifetime)
• Ability to relay to satellites

• Research challenges
• Channels (as always…)
• UAV trajectory planning
• PHY layer challenges on links (e.g., 

Doppler shift in satellite link)

24

[Bhat et al. 2021]
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Joint Communication and Sensing (JCAS)

• Goals:
• Better spectrum usage
• Better use of infrastructure

• Orthogonalization
• Orthogonalization in time/space

• Spatial database 
• Listen before talk 

• Orthogonalization in signal space
• System co-design
• Use of radar signals for communication
• Use of communication signals for radar

• Information-bearing
• Pilot tones and synchronization signals

• Development of joint waveform

25A. F. Molisch, B5G components



JCAS Example
• Example: use of cellular reference signals for radar
• LTE is better than NR
• Dedicated signals vs “already specified”

• Ambiguity function analysis
• Unpredictable placement of RS in time-frequency

A. F. Molisch, B5G components 26
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Joint Computation Communication Caching (3C)
• Metaverse applications will require 

combination of all three
• General network structure

27

Live media

Digital objects

[with Cai et al. 2022a]
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Optimization of data flows

VF

VF

APP

APP

…

Elastic Network 
Resources

Elastic Cloud 
Resources

VF

Cloud-Network Slice

VF

VFVF

VF

• Cloud-Network OS
- Network function virtualization (NFV)

- Software defined networking (SDN)

• Next-generation services

1) Virtual Networks
- 5G slices

2) System Automation
- Smart home/building/factory/city

- Autonomous transportation/logistics

3) Augmented Experience
- VR/AR, interactive/immersive media, connected 

gaming, metaverse

[with Cai et al. 2022a]
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3C types of problems

• Distributed Edge computing:
• Special case of 3C: source and destination are same node

• Strict delay constraints
• Multicasting
• Robustness to infrastructure outages
• Multimodal transmission (combined wired/wireless)
• Security in 3C networks
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Summary
• B5G is on its way
• Applications will drive technology
• Innovations will range from physical layer to applications
• New frequency ranges (THz)
• MIMO (including hybrid beamforming, distributed massive MIMO, OAM, RIS)
• Machine learning (for channels, PHY, MAC, networking)
• V2X and 3D systems
• Joint communication and sensing, and new waveforms (including OTFS)
• Joint communication, computation, and caching  

• Lots of exciting work to be done
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