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Figure 1: Selected use cases that next generation wireless communications sys-
tems aim to enable (based on [2]).

1 Introduction

by Mate Boban

COST INTERACT working group (WG)1 aims at increasing the theoretical
and experimental understanding of radio propagation and channels in environ-
ments of interest and at deriving models for design, simulation, planning and
operation of future wireless systems. Wide frequency ranges from sub-GHz to
terahertz (THz), potentially high mobility, diverse and highly cluttered envi-
ronments, dense networks, massive antenna systems, and the use of intelligent
surfaces, are some of the challenges for radio channel measurements and mod-
eling for next generation systems. As indicated in [1], with increased number
of use cases (e.g., those identified by one6G [2] and shown in Fig. 1) to be
supported and a larger number of frequency bands, a paradigm shift in chan-
nel measurements and modeling will be required. To address the particular
challenges that come with such a paradigm shift, WG1 started the work on rel-
evant topics, ranging from channel sounder design, metrology and measurement
methodologies, measurements, modeling, and systematic dataset collection and
analysis.

In addition to the core activities of WG1, based on the strong interest of the
participants, two sub-working groups (subWGs) have been initiated as part of
WG1: i) subWG1.1 on millimeter-wave (mmWave) and THz sounding (subWG
THz) and ii) subWG1.2 on propagation aspects related to reconfigurable intel-
ligent surfaces (RIS) (subWG RIS).

This white paper has two main goals: i) it summarizes the state-of-the-
art in radio channel measurement and modeling and the key challenges that
the scientific community will have to face over the next years to support the
development of 6G networks, as identified by WG1 and its subWGs; and ii) it
charts the main directions for the work of WG1 and subWGs for the remainder
of COST INTERACT duration (i.e., until October 2025).
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In this white paper, particular attention has been devoted to the concept of
“environment awareness”, which is defined as the ability of communications sys-
tems to sense in the broad context of object detection, positioning and ranging,
and even object imaging. The repercussions of environment awareness are there-
fore discussed throughout the paper, ranging from the definition of use cases and
their requirements (Section 2), to required frequency bands (Section 3), to the
considerations on the design of channel measurements (Section 6.4 and defini-
tion of channel models (Section 7), finally to definition of new technologies such
as integrated sensing and communications (ISAC) (Section 9).

1.1 Mandate of WG1

Extensive efforts are being devoted to obtaining a comprehensive understand-
ing of radio wave propagation in several frequency bands for the development of
future wireless networks. The task of WG1 is to further this understanding by
providing an open and collaborative forum for the exchange of ideas, definition
of key challenges, and identification of directions for research on radio chan-
nels. To that end, the efforts in WG1 relate to propagation modeling for radio
systems, including the ones exploiting mmWave and higher frequency bands
(sub-THz and THz), where large contiguous bandwidths are still available, and
massive multiple-input multiple-output (MIMO) and beamforming techniques,
which will enable spectral-efficient connectivity in densely populated areas. Un-
derstanding radio wave propagation has also been crucial to new applications,
including highly dynamic scenarios, internet of things (IoT) and smart grids. Ef-
forts on propagation modeling for these systems and applications encompassed
vehicular and mmWave cellular access [3], IoT, Smart Grids [4], and energy
efficient cellular radio planning. These propagation modeling studies have been
carried out using various measurement setups [5] or combining measurements
and theory for link- and system-level simulations [6], addressing the time, angle
and polarisation characteristics of multipath channels, as well as the charac-
terisation of material properties, outdoor-to-indoor penetration loss, and link
blockage [3]. Propagation models become mature once supported by a vast
amount of measured and simulated evidence of radio channels, and by our un-
derstanding about them. Ultimately, such mature propagation models may be
able to perform real-time prediction of radio environments and hence provide
accurate-enough channel state information (CSI) to aid radio communication
systems and applications. As an example, a few studies have addressed the
real-time use of deterministic propagation models to help estimate CSI [7], along
with a location-aware CSI fingerprinting [8]. Their real-time use in localisation,
beamforming, and resource allocation algorithms is still in its infancy.

WG1 is also committed to collecting data and sharing them to create large
reference sets for model development and training of machine learning (ML) ap-
proaches, with WG1 members already contributing several datasets for this pur-
pose (datasets available at https://interactca20120.org/wgs/datasets-2/).

Based on the discussion above, Figure 2 summarizes the main topics that
WG1 is addressing, along with the indication of specific topics that are handled
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Figure 2: Topics addressed by WG1 and its subWGs.

by the subWGs. WG1 will contribute to each of these topics in order to reach
its ultimate goal – definition of a comprehensive channel modeling framework
that addresses new scenarios and frequency bands proposed for future wireless
communications systems.
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1.1.1 Mandate of subWG1.1

The goal of the subWG1.1 (mmWave and THz sounding) is to concentrate
the expertise on radio channel measurements and analysis related to mm-wave
frequencies and up, which represent the frontier in experimental channel char-
acterization. Novel experimental set-ups, verification of channel sounders, radio
channel measurements in different environments/for different applications are
some of the key aspects to be investigated. The chain to be covered ranges from
the validation of the measurement equipment to the analysis of the measure-
ment results. The objectives of this subWG are to extend the knowledge on
propagation from empirical analysis and to develop common practices, in order
to create a rich pool of harmonized data from diverse sets of measurements.

1.1.2 Mandate of subWG1.2

The goal of the subWG1.2 (RIS) is the analysis and modeling of propagation in
future smart radio environments empowered by controllable and smart surfaces.
These surfaces enable the manipulation of propagation characteristics, including
wavefront shape and polarization, and the minimization of signal losses. This is
particularly of interest at mmWave and higher frequencies to extend otherwise
limited communication ranges due to high path losses and the very poor signal
penetration into the shadow regions of objects and obstructions. Taking the idea
further, large numbers of smart surfaces would enable smart environments where
it is possible to optimize the channels and to maximize the network throughput
and efficiency.

In order to understand the benefits and limitations of radio channel modu-
lation with RIS, we have to properly understand the modeling and performance
of different types of RIS (e.g., reflect arrays, metasurfaces, holographic surfaces,
etc.). Modeling those properly is a key to continue to the modeling and analy-
sis of individual links, entire systems, and smart environments. Therefore, the
goal of this subWG is to extend the knowledge on three fundamental aspects
of RIS: 1) proper and realistic RIS models for different RIS configurations and
technologies, 2) propagation models for RIS empowered links and systems, and
3) performance of smart links, systems, and environments.

1.2 White paper organization

For each subsequent section of the white paper covering technical topics, we
attempted to cover the following: i) a brief description of the state of art,
including key references; ii) summary of COST INTERACT WG1 contributions
to the topic1; and iii) identification of future work needed on the topic. By
implementing this approach, we hope the white paper serves as a reference for

1While COST INTERACT contributions are not made public, vast majority of contribu-
tions are published in conferences, journals, or other venues, either before or after submission
to COST INTERACT. Throughout the paper, we refer to those publicly available versions of
contributions.
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the researchers looking to get a primer on channel measurements and modeling
for future communications systems.

The rest of the white paper is structured as follows. Section 2 describes the
relevant environments and channel modeling scenarios and Section 3 discusses
the frequency bands of interest. Section 4 provides an introduction into the
wireless channel propagation fundamentals. Relevant channel sounder designs
and metrology are covered in 5. Based on the identified environments and fre-
quency bands, Section 6 discusses the channel measurements. Channel modeling
methodologies are covered in Section 7, and Section 8 discusses channel param-
eter estimation. Section 9 identifies new technologies and techniques related to
channel modeling that need to be implemented in order to properly evaluate
future communications systems. Finally, Section 10 provides an outlook on the
future work and concludes the white paper.
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2 Scenarios

by Vittorio Degli Esposti

Early generations of wireless networks were conceived for a limited number
of propagation environments and use-cases. In terms of physical characteris-
tics, environments were classified into rural, urban and indoor [9], which cor-
responded to an increasing attenuation and traffic density, and therefore to a
decreasing cell radius. Further classification into suburban and dense-urban, or
large-indoor, office and residential indoor is also widely used. The most impor-
tant use case was that of voice services and internet access connectivity using
mobile user equipment (UE) such as smart phones, tablets and laptop comput-
ers. Over the years, driven by technology advances and market demand, wireless
networks have evolved into a multi-technology integrated galaxy of systems, with
a large variety of connected devices, scenarios and propagation environments,
as depicted in Fig. 1. Besides the traditional scenarios described above, novel
scenarios will include the use of new frequencies in the THz and optical bands
and of densified, cell-free networks in high-traffic areas, the realization of the
“Network of Everything” with massive connectivity of objects and machines
to realize “Smart Environments” and “Smart Factories”, also with the use of
ubiquitous Artificial Intelligence and of Reconfigurable Intelligent Surfaces, the
realization of three dimensional (3D) networks including drones and UAVs as
network components, and finally the implementation of automated and con-
nected cooperative driving scenarios using dedicated or cellular-based networks
and of Joint Sensing and Communication techniques .

Although the concept of “environment” or “scenario” is a vague one that
encompasses physical – and therefore propagation – characteristics, frequency
band, technology solutions and applications, here we provide a brief overview
of the wide variety of scenarios that next-generation systems will likely have
to address, with reference to the classification in Fig. 1 and with particular
emphasis on COST INTERACT WG1 research.

Indoor and in-X high-performance-link scenarios. It is well known that
6G-and-beyond systems will have to raise the bar of achievable performance in
term of transmission speed, throughput density, low latency and reliability. This
will require the use of higher frequency bands in the mm-wave, THz and op-
tical ranges, and of network densification [2, 10, 11]. The possibility of very
high bitrates - of the order of Tbps - and very low latencies of THz links will
enable new application scenarios for indoor and very short-range communica-
tions - also known as in-X communications - such as high-definition holographic
infotainment and ”teleportation”, ultra-broadband mobile access for offices and
public spaces, high-performance wireless communication links for industrial ap-
plications, data centers, in-vehicle inter-device and intra-device connections [11].
Visible Light Communications (VLC) are envisioned especially for indoor envi-
ronments, where illumination LEDs, already strategically deployed across indoor
premises, can be conveniently reused for communication [12].
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Vehicular scenarios. Future transportation scenarios will be characterised
by high mobility and will involve cars, trains and unmanned aerial vehicles fly-
ing at low altitudes. All of them will require massive use of radio applications
including Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I) and Vehicle
to Everything (V2X) connections as well as radar and ISAC schemes to ensure
cooperation, control and safety [13]. The dynamic nature of radio links and
networks in the transportation scenarios is the key feature to be addressed in
radio channel modeling research. Within the foreseen automated and connected
cooperative driving application scenarios, key assets are a reliable wireless V2X
connectivity and accurate localization. Most recent vehicles and last-generation
wireless systems users will have such capabilities, while others will not (hetero-
geneous traffic). Environment-aware and cooperative solutions will have to take
advantage of connectivity, localization and mapping information available to the
former kind of road users or to the edge cloud, to enforce safety for the latter
and the whole traffic system. Cooperative, Passive Coherent Radar solutions
are being proposed where signal emitted by the fixed infrastructure and vehicles
equipped with V2X can be reused as multi-static radar sources that the system
can opportunistically use to determine the location of vehicles and pedestrians
along streets and in proximity of road intersections [14].

ISAC and environment awareness. The CSI or at least information about
multipath spatial characteristics should be known at both radio-link ends to
fully exploit the potential of massive MIMO schemes as well as of highly di-
rective mm-wave and THz links in mobile environments. The problem will
therefore have to be addressed, for example through ISAC techniques, artificial
intelligence (AI) techniques [15], or real time use of digital-twin schemes with
embedded propagation models [16, 7]. ISAC, especially at THz frequencies, will
enable high-definition environment ”vision” applications, including environment
mapping, medical imaging, surveillance applications, safety enhancement appli-
cations in vehicular applications, etc. All these methods, combined with the
ubiquitous use of AI can be thought as enablers of the so called “Environment
Awareness” and ”intelligence” of future systems.

Smart and Reconfigurable Environments. AI, universal wireless connec-
tivity (Internet of Everything (IoE)) and RIS technology will enable Smart and
Reconfigurable Environments. For the first time in the history of wireless sys-
tems, RIS and the use of Unmanned Aerial Vehicles or drones (3D networks)
will allow the customization of the propagation environment with the purpose
of optimizing performance and enhancing the application potential [17, 18]. RIS
allow the manipulation of the reflected or transmitted wavefront, enabling in-
teresting applications such as anomalous (non-specular) reflection, focalization,
signal processing. Properly placed and configured RIS can be used to enhance
mm-wave and THz coverage, or to optimize channel capacity or system perfor-
mance with a so-called “Scatter MIMO” approach [17, 18]. The combination of
RIS and UAV is also interesting in highly cluttered mm-wave and THz scenarios
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to compensate for blocked line-of-sight (LoS) communication links and create
controllable and smart radio environments [18, 19].

Industrial Environment. A particular candidate to become ”smart” is the
Industrial Environment where advanced wireless networks will allow a variety
of disruptive applications. Cable replacement with ultra reliable and high-
performance wireless links is very attractive for the great flexibility and in-
creased reliability of connections with sensors/actuators in moving parts and
with robots. The use of mm-wave and sub-THz frequencies will allow ultra
low-latency (below 0.1 ms) connections to avoid oscillating behaviours in con-
trol loops while enabling high-definition environment sensing through ISAC to
control the production process and enforce safety [20, 21].

3 Frequency bands of interest

by Mate Boban

Spectrum is the main consideration for each generation of wireless commu-
nication technology as more spectrum is needed to support higher data rates
[22]. Since mobile communication technologies evolve to new generations, the
use of spectrum continues to expand to higher frequency bands. The spectrum
expected to support environment-aware communications can be divided into the
following frequency bands.

• Sub-6 GHz band: Virtually all of the spectrum up until 4G (LTE)
has been allocated in the sub-6 GHz band. This band continues to play a
crucial role in 5G and is expected to be vital in 6G as well. This frequency
band is the most cost-effective option as a frequency range to guarantee
wide coverage in mobile communication systems.

• Mid-band: The frequency bands between approximately 6-24 GHz are
also identified as competitive candidates for supporting the continued
growth of traffic and environment-aware applications, especially given the
better sensing performance of larger array size per unit area. To sup-
port the continuous growth of traffic, at least 1 to 1.5 GHz of additional
spectrum is needed. The 5925-7215 MHz range has been identified as a po-
tential candidate to provide the needed spectrum. Moreover, compared to
the sub-6GHz band, the propagation attenuation of these bands increase
in an acceptable range while path loss will be combated by adopting ad-
vanced radio technologies, e.g., massive MIMO [23].

• mmWave band: The mmWave band contains a relatively large amount
of available bandwidth, which is essential for ultra-high data rates and
high-accuracy sensing applications. However, operation in the mmWave
band is more challenging due to the unfavorable propagation characteris-
tics compared to lower frequency bands. In the 2015 world radiocommu-
nication conference (WRC), a variety of frequency ranges were proposed
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Figure 3: Spectrum bands.

for IMT sharing study between 24 and 86 GHz and in WRC 2019; specif-
ically a total of 17.25 GHz was identified [24]. E-bands (71-76 and 81-86
GHz) are prime candidates to support larger contiguous blocks in the fu-
ture, mainly reserved for non-geostationary fixed-satellite service systems
(space-to-earth and earth-to-space) [25]. The upper and lower 60 GHz,
namely the 57-64 GHz and 64-71 GHz frequency ranges, further provide
large contiguous chunks of bandwidth to support device-to-device com-
munications through access and backhaul links and aeronautical and land
mobile services, respectively [24]. Furthermore, technologies such as inte-
grated access and backhaul (IAB) could make use of the available spectrum
available at the mmWave band [26].

• Sub-THz and THz bands: Sub-THz and THz bands open new possibil-
ities for sensing and communication [27]. A total of over 100GHz in 92-275
GHz band is allocated, whereas 130 GHz in 275-450 GHz band is identified
for mobile services or land mobile services [28]. At these frequencies, there
are several parts of contiguous spectrum exceeding 10 GHz, which makes
it possible to support very high data rates for short- and medium-distance
communication. In addition, THz bands bring enhanced sensing resolution
thanks to the ultra-wide bandwidth and shorter wavelength [29]. Further
up the frequency, between 450 GHz up to 10 THz there is potential for
further spectrum. While there exists an unprecedented amount of spec-
trum in these bands, they also experience new challenges [30]: extremely
high transmission losses, molecular absorption that creates non-monotonic
pathloss over different frequencies, variability due to weather conditions,
effect of micro-mobility, etc. These effects need to be addressed to ensure
efficient use of the large spectrum. Additionally, the use of visible light
spectrum [31] has gained significant momentum in recent years, given its
ability to support novel communication and sensing use cases.
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4 Wireless channel propagation fundamentals

by Vittorio Degli Esposti, Conor Brennan, and Katsuyuki Haneda

4.1 Basic propagation mechanisms

While an exact description of radio propagation and therefore of a radio channel
might be theoretically possible via Maxwell’s equations, it would be unwieldy
and complex. Instead, it is possible to simplify propagation description - while
retaining relevant features and characteristics - in terms of a set of basic mech-
anisms that will be reviewed in this section.

4.1.1 Waves in homogeneous media

The simplest case to consider is free-space, or propagation in vacuum. In this
case the power density decays inversely with the square of the distance, essen-
tially reflecting the fact that a constant amount of total source output power
is being spread over a larger total surface area as the wave propagates further
away from the transmitting antenna. For communication systems there is an
additional loss, proportional to the square of the frequency, due to the frequency
dependence of the effective aperture of a receiving antenna. At the high mm-
wave and THz frequencies of interest within COST Action CA20120 this is a
significant issue but can be mitigated by the use of narrowly focused beams at
transmitter and receiver. However this relies on the continued existence of clear
line of sight path. This is explored in [32] in which high resolution dual-polarised
double directional measurements are taken in the context of industrial control
communications operating at 300GHZ. Propagation and blockage spatial and
temporal characteristics are obtained from the processed data indicating the
presence of viable alternative communication paths.

Propagation within any other homogeneous material that can be found in
a radio channel (e.g. water, air, building materials, human tissue) is broadly
similar in many respects to the free space case. The precise physical effect of a
particular material can be described with reference to its constitutive parame-
ters, namely its electric permittivity, magnetic permeability and conductivity.
These parameters capture the macroscopic effects of the material’s atomic and
molecular structure on any waves passing through them. These effects manifest
in several ways including a change in the wave’s phase velocity (slowing, relative
to the speed in vacuum) and also a change in the characteristic impedance (the
ratio of the amplitude of the electric and magnetic fields) and the wavelength
(the physical distance between successive peaks or troughs along the wave). Im-
portantly, the presence of conductivity or dielectric hysteresis in so-called lossy
media manifests itself as an extra reduction in the power density as the wave
propagates (in addition to the spreading discussed previously). These effects
are frequency-dependent which leads to dispersion effects as the individual fre-
quencies which comprise a pulse travel at different speeds through the material,
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causing the pulse to distort.

4.1.2 Reflection, transmission, diffraction and scattering

The primary complication afflicting radio propagation is the proliferation of
waves occurring at the boundaries between materials (such as when a wave
travelling in air strikes a wall). Referring to figure (4) reflection and trans-
mission occur when an incident electromagnetic wave strikes the face of an
object which is locally smooth on a scale comparable to the wavelength. In
such circumstances the incident wave produces a reflected wave travelling away
from the face and a transmitted wave propagating into the object, the direc-
tion of propagation of both being governed by Snell’s laws of geometric optics.
The amount of power reflected from, and transmitted through, materials is fre-
quency dependant and their specification for new communication frequencies
at millimetre wave and higher is an important task being addressed in COST
Action CA20120. Several contributors have conducted studies of reflection and
transmission (penetration) loss for typical building materials, concentrating on
their variation with angle, frequency and polarisation. [33] described the use of
a wideband channel sounder to examine a variety of materials at four discrete
frequencies between 28 GHz and 70 GHz and noted the increase of penetration
loss with frequency. Continuous measurements of reflection and transmission
losses are made in [34] and [35] for 17 common materials in the frequency range
2GHz to 170GHz. Oscillations in the reflection loss as the frequency varies are
noted, due to the effect of internal reflections within the finite slab of material
under test. These diminish as the frequency rises, consistent with the increased
penetration loss as noted elsewhere.

Another research focus is on the development of so called reconfigurable in-
telligent surfaces RIS which do not obey the above laws of geometric optics but
rather can reflect or transmit signals in preferred directions, thereby improving
coverage or reducing interference. Within COST Action CA20120 researchers
are examining ways to accurately model them using commercial Finite Element
software [36]. This numerically intensive approach is shown to give good agree-
ment with the simpler Generalised Law of Reflection approach but has the added
advantage of being able to model scattering in all directions and thus can be
used for interference analysis. More details on COST Action CA2 20120’s work
on RIS are available in section 9.1

Diffraction occurs when a wave strikes the sharp boundary between two such
faces (such as at the edge of a building). In such instances the wave is scattered
in a continuum of directions, as defined by the so-called Keller cone [37]. As the
interface between regions becomes rougher (or equivalently the frequency be-
comes higher such as is the case with mmWave and THz communications) finer
details at wavelength scales become important and these simple well-defined
mechanisms of reflection, transmission and diffraction give way to the more
general process of diffuse scattering, which as the name suggests results in a
proliferation of waves being scattered diffusely across a wider angular range (as
per figure (5). Surface scattering, where the inhomogeneities are assumed to
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Figure 4: Plane wave reflection from smooth boundary. Incident wave E⃗i, H⃗i

produces a reflected wave E⃗r, H⃗r and a transmitted wave E⃗t, H⃗t

lie on the material boundary, has been studied by participants in COST Action
CA20120 with a variety of models proposed. [38] and [39] both use numerically
precise models based on the method of moments with the former paper con-
centrating on efficient ways to solve the associated computationally intensive
equations while the latter contribution examined depolarisation effects and the
dependency on material, frequency and surface size. The accuracy of a simple
directional scattering (DS) model is assessed in [40] and effective roughness and
scattering coefficient are identified as key parameters. The model is extended
using a t location-scale distribution in order to make it better fit electromagnetic
simulation results.

Several authors have identified the process of volume scattering, which oc-
curs when waves interact with fine inhomogeneities within a material, as being
of more importance than surface scattering. The Effective Roughness model is a
relatively simple tunable model and has been used to describe such scattering at
mm-wave frequencies [41]. In this contribution it was noted that materials with
complex internal structure (such as reinforcing mesh) can produce significant
backscattering resulting in a diffuse scattering model involving two directional
lobes (in the forward and backward directions). The effective roughness model
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Figure 5: Laws of geometric optics gradually give way to diffuse scattering
(reduced specular lobe and increased side lobes) as surface roughness increases

is heuristic but is based on a solid insight of the physical processes that take
place at a material boundary. In [42] the authors enhance its scientific basis by
modifying it so that it obeys the reciprocity principle (i.e. is unchanged by an
interchange of transmitter and receiver locations). As seen, diffuse scattering
models are often statistical or heuristic in nature, given the uncertainty sur-
rounding the physical form of small scale inhomogeneities that produce them.
This uncertainty is caused by an unavoidable limitation in the level of detail of
databases describing buildings etc. Nonetheless some COST INTERACT con-
tributors have examined what can be achieved with an enhanced level of building
geometric description. In [43] the impact of building facade detail is studied by
comparing ray tracing output (see below) to measured data. It is concluded that
the inclusion of enhanced information about facade features (windows, ledges
etc) can result in a more discriminating identification of multipath components
than would be the case with simple diffuse scattering models applied to flat
facades.

4.2 Large-scale and small-scale propagation phenomena

As discussed in Section 4.1, the quality of a radio channel is ultimately de-
termined by how electromagnetic waves interact with the materials within it.
Recognising that such a full electromagnetic description is practically impossi-
ble, channel modeling has instead focused on describing the channel in terms of
a number of key parameters that have the greatest effect on the performance of
the digital communication scheme being enabled by the channel. The range of
parameters and the accuracy with which they need to be specified have evolved
in tandem with the communication schemes themselves as they grown in sophis-
tication over the decades. Parameters are divided into large scale parameters
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Figure 6: Path loss, shadow fading, and small scale/multipath fading.

and small scale parameters, depending on the range over which they vary sig-
nificantly compared to the wavelength.

4.2.1 Large scale propagation phenomena

Path loss
Path loss describes the large-scale reduction in power density as signals move
away from the transmitter. It is the most important parameter in channel
modeling since it ultimately determines the possible communications range and
its quality, i.e., the signal-to- noise ratio. It also determines the signal-to-
interference ratios (SINR) in the case of an interference-limited environment
within which frequencies are reused to ensure efficient use of spectrum. From
an energy-efficient networks perspective path loss defines the minimum trans-
mit power of base and mobile stations required to maintain a target SINR and
quality of service. Consequently, path loss is the most well-studied parameter
in channel modeling. Path loss is typically modeled using a power law, wherein
the loss is proportional to the distance raised to the power of some specified
exponent. Path loss exponents typically range from 1.5 to 4 for waveguiding to
deep non-line-of-sight environments. Frequency dependency of the path loss has
also been studied thoroughly, indicating good agreement with the theory, e.g.,
Friis’ law with constant-gain antennas. Even though it is a subject that has
been extensively studied, it remains a subject of research when new spectrum,
use cases and scenarios emerge, e.g., rural and aircraft scenarios.
Referring to the log-log plot of Fig. 6, path loss is typically depicted as the best
linear fit extracted from the measurement data.
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Shadow fading
Path loss models assume a regular decay of power density with distance (e.g.
linear or piecewise linear when viewed on a log scale), In practice the power
density will display further random large-scale variations around this trend as
some locations suffer from a greater or lesser degree of obstruction by buildings
etc. This is referred to as shadow-fading and is typically modeled using a suit-
able random distribution. In legacy below-6GHz cellular radio systems, shadow
fading is typically defined by fluctuation of signal strength over different sectors
of base stations (BSs) at the same communication distance between base and
mobile stations. A single BS site consists of multiple BS units, each covering a
limited azimuth and/or elevation angular range called a sector. The level of ob-
struction in each sectoral direction varies, with some possibly experiencing large
blockages with a consequent decrease of signal strength. The standard deviation
of shadow fading is therefore not necessarily identical to the second order mo-
ment of differences between path loss and small-scale-averaged received signal
strength normalized to the transmit power. Still, such a definition of shadow
fading is the only one that can be used for radio communications systems and
scenarios where the use of sectors would not be popular, e.g., in indoor scenar-
ios. An open research question of shadow fading is its correlation over space
and frequency [44]. Referring to Fig. 6, shadow fading adds a slowly varying
process on top of the path loss.

Blockage
Blockage refers to the obstruction of the LoS path between a transmitter and a
receiver by an object (e.g., building, wall, human body, etc.). It can be modeled
either as part of the shadowing fading process or explicitly, where the latter is
preferable in case of a known/measured additional blockage loss by a specific
object [45, 46]. In case of explicit modeling, it is added as an additional loss
on top of path loss and shadow fading. Below we elaborate in particular on
human blockage, as it becomes increasingly relevant for handheld or on-body
user devices utilizing mmWave or higher frequency spectrum.

It has been shown through experiments that losses of a LoS connectivity due
to human blockage is reproduced well by modeling a human body as a set of
absorbing knife edges and considering diffraction on each edge, where the LoS
path is totally absorbed by the absorbing screen representing the body. The use
of absorbing knife edges is advantageous to model human body in its simplic-
ity because diffraction coefficients do not depend on polarization of an incident
wave, in contrast to the case of conducting screens. As the analytical formula
of diffraction coefficients assume infinitely long edges, they are better appli-
cable to higher radio frequencies where the human body becomes electrically
larger. A research question would be estimation of blockage loss when there
are multiple objects intervening the LoS connectivity [47, 48]. The analytical
treatment becomes much more complex than a single body case because diffrac-
tion coefficients of an absorbing knife edge assume incident plane wave, while
an incident wave to the following edges after the first one may not be a plane
wave necessarily. The same problem encounters when estimating extra losses
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to free-space due to multiple diffraction over hills and buildings in long-range
point-to-point links. In addition, as the cross sectional area of the Fresnel zones
becomes larger as longer connection distance, estimation of the blockage losses
are more challenging because only a part of the Fresnel zones may be intervened
by blocking objects.

4.2.2 Small-scale propagation phenomena

Large scale effects such as path loss and shadow fading describe variation of
power density that occur gradually on a scale of many wavelengths. In practice
it is noted that power density varies rapidly on the scale of the wavelength also.
This phenomenon, called fast fading,is caused by wave interference between EM
waves arriving at a given location via multiple paths of differing lengths, i.e. by
the propagation mechanism usually referred to as multipath. Given the impos-
sibility of precisely specifying these path lengths this is an intrinsically random
process and a detailed statistical modeling of such small-scale fading effects is
therefore an essential part of modern radio channel models. Fast-fading signal-
strength fluctuation are described using a variety of statistical distributions,
Raileigh and Rice distributions being the most widely used for non-LoS and
LoS channel conditions, respectively. Multiple parameters are used to model
time, frequency and space dispersion effects of multipath propagation. These
effects and are often represented by Fourier transform pairs, e.g., space/angle,
time/Doppler and delay/frequency, the choice of which domain to use depending
on the channel sounding and modeling methods.

Channel models usually prescribe the second moments of the power spec-
trum in the respective domains, i.e., angular, delay and Doppler spreads, or
their Fourier counterparts, i.e., spatial, frequency and time correlation inter-
vals. These parameters have been studied thoroughly through a wide range of
channel sounding from a few hundreds of Megahertz to sub-THz radio frequen-
cies across many important radio communications scenarios. However, it must
be noted that the sole spread or correlation parameter values do not suffice to
reproduce channels that resemble realistic conditions because many different
shapes of power spectrum or correlation functions yield the same parameter
values. Explicit knowledge, i.e., shapes of power profiles and correlation func-
tions is therefore usually accompanied with parameter values, as discussed in
the following.

Multipath dispersion and clustering
Power spectrum of multipaths over angles and delays typically does not have
equal magnitude over the domain, but shows some extents of power concen-
tration on specific angles and delays in each radio link. Such concentration of
power in the spectrum is represented by clusters in multipath channel model-
ing. Each cluster can be defined by its concentration angles and delays, which
are called cluster centers, along with their distributions in the respective do-
main. The latter is typically modeled by Laplace and exponential distributions
in the angular and delay domains. Setting the right cluster centers and types
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of distributions allows us to reproduce the realistic power spectrum shapes of a
radio link realization while respecting their spread parameter values. The use of
clusters for multi-dimensional power spectrum modeling of multipath channels
is a well-established approach, as evidenced by standard channel models that
rely on them. An open research question is the variation of angular and delay
properties of clusters across different radio frequencies, especially at mmWaves
and higher frequencies. It has been discussed among the wireless communica-
tion community that multipath channels are sparser, i.e., the number of mul-
tipaths and/or clusters is smaller, at higher radio frequencies. There are some
indications from comparative channel sounding performed at various radio fre-
quencies [49, 50, 51, 52] that support the conjecture, where the power spectrum
becomes more “spiky”, i.e., dominated by specular reflections while reduced
scattering effects, so that clusters become more distinguishable to each other.
The clearer specular reflections and reduced scattering are both explained by
wave-interacting objects whose surface roughness becomes comparable to the
wavelength of the radio frequency, making the wave-object interaction more
angularly selective and the number of multipaths arriving at the receive side
smaller becomes less. The same reports tend to show that, despite the sparsity,
the spread parameter values do not necessarily change noticeably. Some other
reports, on the other hand, show evidence from channel sounding at multiple
frequencies that the power spectrum shapes do not change noticeably across
frequencies [53, 54]. The discussion of multipath sparsity and their influence on
spread parameter values is therefore not conclusive yet, requiring further evi-
dence from multiple-band channel sounding in different scenarios. They have
implications on cluster models across the radio frequencies in standard channel
models. Referring to Fig. 6, multipath fading results in fast variations super-
posed on top of the path loss and shadow fading.
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5 Channel sounder design & metrology

by Diego Dupleich and Wei Fan

5.1 Channel Sounding Design

Channel sounding consists of “sounding” the environment with a known signal
and analysing the received echoes to characterize the propagation of electro-
magnetic waves. Since both the transmitted and the received signal are known,
the time-variant channel impulse response can be extracted. The complexity
of the sounding set-up depends on the propagation parameters under investiga-
tion and target channel models and systems. Nowadays, with mobile wideband
MIMO systems at high frequency in sight, the ultimate goal of multidimen-
sional channel sounding is to provide the necessary data to jointly estimate the
amplitude (polarization) and different geometrical properties of the multi-path
components in the channel: delay, direction of departure (DoD), direction of
arrival (DoA), and Doppler. In practice, the simultaneous acquisition of these
multipath component (MPC) properties is challenging and there is frequently a
trade-off between resolution in the delay domain (bandwidth), angular domain
(directivity), and Doppler (sampling rate).

5.1.1 Wideband Channel Sounding

Channel sounders are usually classified as frequency-domain or time-domain
channel sounders.

Vector network analyser (VNA) is a widely used type of frequency-domain
channel sounder, recording the frequency response between two ports of the
device, as shown in Fig. 7a. They are popular due to the ease of calibration,
excellent dynamic range, scalable and flexible carrier frequency and bandwidth
settings. With the help of external frequency extenders, it supports channel
measurements in the mmWave/(sub-)THz bands as well. However, there are
some shortcomings, for example, slow measurement time (determined by the
number of swept frequency points and IF settings), short measurement distance
(due to high losses in the RF cable used to remote antennas), and lack of VNA
ports to support multi-antenna measurements. However, different solutions have
been investigated in INTERACT to work around some of these limitations.
Radio-over-fiber (RoF) has been implemented to solve the problem of short
measurement range for mmWave/(sub-)THz bands [55, 56]. Moreover, a phase-
compensation scheme that counteracts random phase variations has been tested
in [57, 58], achieving accurate and phase coherent measurements for VNA-based
directional scanning schemes (DSSs) and virtual-array schemes at mmWave and
(sub-)THz.

On the other hand, time-domain channel sounders utilize specially designed
wideband signals. Popular signals are multi-carriers and pseudo-noise (PN) /
pseudo-random binary sequencess (PRBSs) (displayed in Fig. 7b), which have
special auto-correlation properties in time. In contrast to multi-carrier, PRBS
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(a)

(b)

Figure 7: Wideband channel sounding architecture (a) VNA-based and (b)
correlation based.

have the advantage of a low peak-to-average power ratio (PAPR), allowing the
optimization of transmit power, a scarce resource at high frequencies. On the
other hand, unlike with multi-carrier signals, the spectral power density of PRBS
is not uniform over the measured bandwidth, which also creates difficulties on
the frequency response calibration of the system. In comparison to VNAs,
time-domain channel sounders allow real-time measurements. However, this
requires expensive wideband digitizers that can be saved by implementing sub-
sampling or the sliding correlation architecture. This also has the advantage of
an increased SNR at the expense of larger measurement times.

5.1.2 Antennas and Antenna Arrays for mmWave and (sub-)THz
Channel Sounding

For mmWave/(sub-)THz applications, it is of high importance to have knowl-
edge of the spatial profile of the channel. Several strategies have been reported in
the literature to capture this information, including the DSS and the utilization
of virtual and physical antenna arrays. In the DSS scheme, a highly directional
antenna can be centred on a turntable and rotated to record the spatial pro-
file of the channel. The DSS scheme has been the most popular solution for
mmWave and (sub-)THz bands because of its simplicity, low cost and high-gain
offered by the employed antenna. However, it is slow due to the mechanical
steering nature and its spatial resolution is essentially constrained by the di-
rectivity of the antenna [55, 56]. The virtual array solution is another popular
scheme that employs a single antenna which is sequentially moved in pre-defined
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spatial locations (i.e. virtual elements of the array) [57, 58]. However, the DSS
and virtual array schemes can only be used for static propagation scenarios due
to long measurement time. On the other hand, time-varying scenarios can be
measured with physical arrays. The multiplexing antenna array scheme consists
of several directional antennas pointing to different spatial directions connected
to a radio frequency (RF) switch, enabling the direct recording of the spatial
profile [59]. To decrease the hardware complexity and cost while maintaining
the performance of the full digital structure, a switched array based channel
sounder for mmWave bands was reported in [60]. By activating different an-
tenna pairs, channels of all antenna pairs are measured at different time instants.
Switched-array sounding can accomplish one MIMO channel snapshot within a
very short measurement time. However, non-sequential antenna switching is
needed to overcome the aliasing in the parameter estimation of Doppler fre-
quencies and angles of MPCs [61]. With phased arrays (i.e., with an analog
beam-forming structure), the process of beam-steering is much faster and it has
been widely used in the mmWave bands [62]. Though highly promising, its
application to large-scale configuration at mmWave/(sub-)THz bands has not
been reported for channel sounding. More flexibility and capabilities compared
to phased arrays can be achieved with a digital beam-forming structure, in which
each antenna element has an individual RF chain [59]. However, the number of
RF channels is essentially limited due to cost and complexity concerns.

5.2 Metrology of Channel Sounding

Metrological assessment of multidimensional channel sounding has gained rel-
evance in the latest years as it can be seen from different activities around
the world: the METERACOM project1, the NextG Channel Model Alliance2

(sponsored by NIST), and standardization activities in the IEEE P2982 group
(mmWave Channel Sounder Verification), which is working towards recommen-
dations of methods for verifying mmWave channel sounders performance. These
verification methods are usually based upon comparison of processed channel
measurements to either theory or to particularly designed artefacts that generate
MPCs with known characteristics in the different domains [63]. These artefacts
can also be measured over-the-air [64], which offers the versatility of including
the measurement antennas and allowing mobility during the test, enabling the
verification of angle of arrival/departure and Doppler [65].

5.3 Future Work

Within COST INTERACT WG1 and subWG1.1, we will be tackling the reduc-
tion of measurement time in virtual-arrays and DSS schemes. It is important
to build statistically meaningful 6G channel models, which requires double di-
rectional channel measurements at multiple locations for many deployment sce-
narios. However, a key bottleneck for channel sounding at mmWave/(sub-)THz

1https://www.meteracom.de
2https://www.nist.gov/ctl/nextg-channel-model-alliance.
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frequency bands using the DSS and virtual arrays is the long measurement time
associated with the mechanical movement of the antenna. Virtual array based
channel sounder for the W-band (75 GHz - 110 GHz) was designed and employed
for channel measurements in [57, 58]. We will continue working on developing
virtual array channel sounder for the 220 GHz to 330 GHz frequency band.
A few works on channel sounder to support cell-free massive MIMO scenarios
were reported within COST INTERACT [66], which we will continue to cover.
The implementation of physical-arrays at (sub-)THz for dynamic measurements
and joint estimation of Doppler/angle/delay of MPCs will be addressed from
a metrological and practical point of view. Within the scope of ISAC, there
is plenty of space for the optimization of baseband excitation signals to en-
hanced sounding performance, reduce uncertainties during measurements, and
optimally exploit the hardware resources. Non-linearities are also challenging
with the utilization of wideband multi-carrier signals and need to be addressed
from a metrological and practical point of view.
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6 Channel measurements

by Mate Boban, Diego Dupleich, Wei Fan, Marco Skocaj, and
Wenfei Yang

6.1 sub-6 GHz Frequency Band

The first four generations of cellular systems as well as IEEE 802.11 (WiFi)
standards up until a decade ago were all enabled by sub-6 GHz bands. Therefore,
over the last more than 30 years, a large number of measurement campaigns have
been carried out to characterize wireless propagation in sub-6 GHz bands [67].

However, these bands still garner interest, primarily due to emerging appli-
cation and deployment scenarios and use of novel antenna techniques. To that
end, recent studies presented at COST INTERACT meetings focused on the
characterization of high mobility scenarios, such as vehicular and indoor factory
environments, and considered new deployment approaches, such as cell-free and
massive MIMO architectures.

In [68], authors conducted channel measurements at 3.2 and 5.81 GHz in
vehicular propagation environments, including V2V, V2I, and V2P scenarios.
Together with channel measurements, the authors collected LiDAR data cap-
tured by sensors installed in the connected vehicles and built a dataset with
coherent perception and propagation traces. In [69], authors performed mea-
surements in a cell-free vehicle-to-infrastructure communication scenario using
a real-time channel sounder operating at 5.89 GHz and with a bandwidth of 80
MHz. At the transmitting side, they considered different setups with different
number of access points and antenna elements. At the receiving side, multiple
omnidirectional antennas were installed in a van and spaced more than 10 lamb-
das, enabling the measurement of dynamic and decorrelated channels. For each
setup, the authors evaluated SNR and root mean square (RMS) delay spread
(DS), and demonstrated that cell-free architecture can guarantee a better and
spatially more uniform link quality.

In [70], authors performed wideband and ultra-wide band measurements
and adopted a Bayesian approach to derive and empirical fading model for
device-free localization purposes. They considered different setups, including
outdoor measurements at 5.2 GHz and indoor measurements at 4 GHz. In [71],
authors carried out a measurement campaign to characterize indoor-to-outdoor
high-mobility propagation scenarios at 5.9 GHz. The transmitter antenna is
installed inside a building and placed on a rotating unit that rotates with a
constant velocity. The receiver is placed on the roof of another building at a
distance of 140 m. The results include normalized local scattering functions for
different velocities of the transmitted antenna.

In [72], authors considered a factory environment and conducted measure-
ments at 3.7 GHz considering two different deployment options: a co-located
massive MIMO antenna array and a unique randomly distributed array. Mea-
surement results are used to quantify the channel hardening effect observed when
increasing the number of antennas, and show that the usage of massive MIMO
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arrays in rich scattering environment can reduce large scale power variations
and help in achieving more reliable wireless channels.

6.2 Mid-band (6 GHz - 24 GHz)

As the spectrum below 6 GHz is limited, current services are already using a
large proportion of the available spectrum. Therefore, resorting to higher fre-
quency ranges becomes a necessity. Frequency bands between 6 GHz - 24 GHz
are considered as a promising candidate for supporting future wireless commu-
nications systems due to the lower path loss compared to higher (mmWave and
above) bands and a potential to support massive MIMO systems.

While up to now there have been limited contributions in terms of measure-
ments in mid-bands by COST INTERACT (e.g.,[73]), channel measurements
for frequency bands between 6 GHz and 24 GHz have been widely conducted
in the literature, where indoor scenarios [74, 75, 76, 77, 78, 79, 80] have driven
more research interest over outdoor scenarios [81, 82].

The study in [73] presented measurements for extremely large antenna ar-
ray (ELAA) with a 32×32 Rx virtual planar array in 10 GHz band in two
indoor environments (meeting room and classroom). Results indicate strong
non-stationary effects in the spatial domain as well as significant near-field ef-
fects, both of which become non-negligible in ELAA channel modeling. As the
antenna arrays become larger and since massive MIMO systems are expected to
operate in mid-bands, further investigations of non-stationarity are needed with
ELAA. To that end, in [78], a 20×20 virtual uniform rectangular array (URA)
was used at Rx side in channel measurements at 13–17 GHz in a lecture hall
environment. Channel parameters, including channel gain, K-factor, and DS
were observed over the array which showed considerable variations without de-
terministic trends. In [79], a 64×4 virtual URA was used at Tx side in channel
measurements at 11 GHz in a theater environment and channel parameters such
as shadow fading, DS, and coherence bandwidth were derived over the array.
Similar to [73], the spatial non-stationarity was again pronounced.

Primary channel parameters including path loss, shadowing, K-factor, DS,
angular spread (AS), cross-polarization ratio (XPR), and correlation properties
have been obtained in several environments. In [74], channel measurements
were conducted at 11 GHz and 14 GHz in indoor environments, where the an-
tenna elements were configured in a 7×7 square grid. The path loss exponent
(PLE) and DS were derived from the averaged power delay profile (PDP) to re-
move the effect of small-scale fading. [75] presented a complete parametrization
for a three-dimensional (3-D) geometry-based stochastic radio channel model
(GSCM) at 10.1 GHz based on a measurement campaign in a lobby environ-
ment. To obtain the 3-D spatial information, a virtual conformal array consist-
ing of four 9×9 planar arrays was used in the measurements. The estimation
of signal parameters via rotation invariance techniques (e.g., ESPRIT) were
employed to estimate the MPC. MPCs were first clustered by the “Power K-
means” algorithm and then cluster parameters were also obtained. The study
in [81] carried out similar parametrization procedure based on channel measure-
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ment at 11 GHz in a micro-cell environment. A virtual uniform circular array
(UCA) with 12 elements were used in measurements, hence the angular spread
was only available for the azimuth plane. In [77], measurement campaigns were
conducted by the DSS at 13–17 GHz in an indoor lecture hall and a laboratory
environments with high gain horn antennas. The space-alternating generalized
expectation–maximization (SAGE) algorithm was applied to de-embed the ef-
fect of antenna response and then the DS and AS were obtained.

The characteristics of specific propagation mechanisms, such as diffuse scat-
tering and diffraction, have been also studied for the mid-band. [76] charac-
terized diffuse scattering based on MIMO channel measurements at 11 GHz in
indoor environments. Propagation parameters of diffuse scattering were jointly
estimated by the RiMAX-based estimator, where incoherent plane waves due
to diffuse scattering is modeled stochastically as dense multipath component
(DMC). The measurement results showed that significant DMC exist, which
affected the eigenvalue structure of the MIMO channel.

In summary, existing channel measurement campaigns in mid-band have
been conducted in various indoor but few outdoor environments. The mea-
surement results covered statistical channel parametrization, non-stationarity
analysis for MIMO channels, and propagation mechanisms study.

Future measurement campaigns in mid-band are expected to cover more
propagation scenarios, especially outdoors, which are necessary for defining
proper channel models for outdoor scenarios in these bands. Further measure-
ments and analysis are required to explore characteristics of massive MIMO
channels, including how the propagation environment affects massive MIMO
system performance in mid-band.

6.3 mmWave and (Sub-)THz band

The characterization of propagation from measurements at mmWave and the
lower THz bands has gained a lot of attention in the recent years. The free
blocks of spectrum available in these frequencies enable the implementation of
high data rate wireless links with enhanced capacity and with an unprecedented
level of resolution that makes them suitable for sensing applications.

However, there are propagation aspects related to the wavelength at mmWave
and (sub-)THz differing to the well known and studied sub-6 GHz bands. As the
frequency goes up, transmission loss will become high, diffraction becomes much
weaker, and penetration becomes very difficult, making the propagation channel
much sparse and specular. In addition, in the mmWave and (sub-)THz range,
particles in the atmosphere requires further considerations for some frequency
bands.

To compensate the increased isotropical path-loss, high-gain radio interfaces
need to be employed. Therefore, the spatial characteristics of the channel be-
come more relevant for channel modelling and system design, since the informa-
tion on where to point the antenna beam is of special importance. Consequently,
even empirical path-loss models have also been adapted from the typical isotrop-
ical characteristics of the antennas to consider the directivity [83].
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Therefore, there is paradigm shifting from purely stochastic towards hybrid
stochastic/deterministic models for these frequency bands with the inclusion of
deterministic components. This requires a more precise characterization of the
electromagnetic properties of different constructive materials and a deeper anal-
ysis on the scattering properties. The absorption coefficient and refractive index
of typical building materials (glass, plaster, and wood) has shown a good agree-
ment between the measurements and the results of the Fresnel equations, [84].
On the other hand, diffuse scattering is modelled by extending Fresnel equations
for specular reflections with a Rayleigh factor obtained from the knowledge of
statistics of surface roughness by Kirchhoff theory of scattering [85].

COST INTERACT contributions on the topic of material penetration and
reflection losses in a wide range of frequencies covering from sub-6 GHz to the
lower THz bands (up to 170 GHz) have shown a relative low dependence on
frequency of the reflection coefficients for the majority of the materials un-
der test, but an increased penetration loss above 100 GHz [86, 87]. In addi-
tion, measurement-based analysis from different typical construction materials
at 27 GHz showed that the scattering from internal structures can be relevant,
especially in the case of Gypsum-board dividing-walls which have a low pene-
tration loss and relevant internal in-homogeneity [88].

Regarding weather and influence of rain in point-to-point mmWave links,
the attenuation to long time exposure to rain in direct and side (NLOS) links
at 25.84 GHz and 77.52 GHz have been measured and modelled in [89], showing
a higher attenuation on the side links due to the scattering from the rain.

Human blockage also becomes more severe because of the directivity of the
radio interfaces and the increased penetration losses with frequency. Frequently,
two different approaches are used on the characterization of human blockage:
an empirical, based on the analysis of fading statistics, and an analytical, based
on the double knife-edge diffraction (DKED) model. The time variant human
shadowing statistics at 60 GHz inside an Airbus 340 have been studied us-
ing different antenna types in [90]. Similarly, short-range measurements at 60
GHz in [91] show that the signal level attenuation follows a Gaussian distribu-
tion. In [92], 73.5 GHz measurements in pedestrian crowd scenarios have been
used to derive a model based on Markov’s chain, which is also considered un-
der the stochastic modelling approach in the 3GPP TR 38.901. On the other
hand, analytical models based on the knife-edge diffraction principle predicts
the obstruction loss based on the Huygens’ principle: the diffracted front waves
interfere constructively and destructively behind the blocker. Human blockage
measurements in several mmWave bands up to 60 GHz have been compared to
different modelling approaches in [93, 94], where a clear frequency dependence
on the losses has been observed, with maximum losses up to 25 dB at 60 GHz.
Similar results at 70 GHz are presented in [95], where measurements are com-
pared to the predictions with the DKED model considering the directivity of the
antennas. COST INTERACT contributions in human blockage at (sub-)THz
have been analysed from measurements in [96]. People with different complex-
ion have been set frontally and laterally interrupting highly directional links,
showing attenuation results higher than 25 dB and 30 dB, respectively. These
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Figure 8: Power azimuth/elevation profile at RX in an external AP to inside of
machine scenario at 300 GHz, [106].

results are underestimated with theoretical diffraction models as the METIS
and DKED, which need to be extended including the antenna directivity, as
discussed in [95].

Regarding the characterization of propagation at (sub-)THz, there are al-
ready several measurement campaigns in different scenarios, covering from very
short link applications as desktop [97], rack-to-rack communications for server
rooms [98]; to middle-range applications as wireless links in meeting room [99],
shopping mall and airport [100], between others; and outdoor applications as
parking lot [101], courtyard and crossroad [102], train stations [103], etc. The
impact of polarization in the channel when considering highly directive radio-
interfaces at (sub-)THz has been studied in controlled experimental set-ups and
in real complex environments in [99], where the dependence of the path gain on
the incident and reflected angles is observed and contrasted with Fresnel. In re-
cent times, (sub-)THz has also been targeted to industrial applications [104], and
therefore the characterization of propagation in this environments has gained a
lot of relevance, [105]. COST INTERACT contributions in (sub-)THz measure-
ments in industrial settings and machines have been presented in [106]. The
temporal/spatial characteristics of the channel in an external access point (AP)
to inside of machine (through penetration by protective glass) shows a channel
with a rich set of multi-path components from the different metallic frames and
machine components. A very precise idea of the location of the different objects
in the environment can be depicted from the geometrical properties of these
MPCs. This offers an immense playground for the implementation of sensing
applications that can be used to control different production processes. The po-
larization of the MPCs also showed a behavior in concordance with the Fresnel
equations. In addition, the obstruction of the LOS component by different parts
of the machine or external items as a forklift truck passing by showed that there
are remaining MPCs that can be used to maintain a considerable link budget
for communications.

However, despite the differences in propagation between the sub-6 GHz and
higher bands, simultaneous multi-band measurements at different frequencies in
several environments have yielded striking results in similarities: the dominant
MPCs are mostly present in the different bands [107, 108, 109, 110]. Hence,
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Figure 9: Power delay profiles and Doppler spectrum densities at 3.2 GHz and
34 GHz in V2V scenarios, [112].

there is a high correlation between bands, which has been further discussed and
included in channel models [111].

COST INTERACT contributions in simultaneous multi-band measurements
at sub-6 GHz, mmWave, and (sub-)THz in different scenarios have shown strong
similarities on the multi-path components in the different bands [110, 112, 113].
The dominant paths are present with similar gain and, different with was ex-
pected, instead of an extremely sparse channel, dense-multi-path components
have also been observed at mmWave frequencies in many different scenarios.
The PDPs and Doppler spectral densities (DSDs) from multi-band (3.2 GHz
and 34 GHz) V2V measurements in urban street scenarios showing strong sim-
ilarities are displayed in Fig. 9, [112]. This similar distribution of the MPCs
motivates to further explore the use of sub-6 GHz channel properties for beam-
forming at mmWave: the analysis of the multi-band measurements in an indus-
trial scenario from [110] shows that this can be effectively exploited in NLOS,
[114]. Similar results on the distribution of MPCs in different bands have been
observed in multi-band mmWave and THz measurement in a conference room
in [113], where multiple common scatterers and the presence of high order re-
flections at THz have been observed.

Future measurements need to be designed to cope with the requirements on
channel models to cover the spectrum from sub-6 GHz to THz and consider the
needs of ISAC applications. However, in case of the (sub-)THz bands, mea-
surements are still rudimentary due to the complexity of the channel sounders
and set-ups required to capture the multi-dimensional properties of the chan-
nel, making it often impossible to resolve different dimensions simultaneously.
Therefore, significant work needs to be spent on the joint estimation of Doppler,
angular, and delay structure of the MPCs at higher frequencies.
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6.4 Measurement data collection contributed to COST
INTERACT WG1

Empirical measurements are fundamental for the design, understanding and
validation of radio channel models. Furthermore, the creation and sharing
of standard reference datasets enables data-driven and hybrid model design
approaches in an effective and reproducible way. COST INTERACT’s open
collaborative environment constitutes a unique opportunity to share measure-
ments, simulation scenarios and models inside and outside the action. In this
regard, the Horizontal Activity group 1 (HA1) is responsible for datasets’ setup
and maintenance. A total of four datasets, which are briefly reported and
described in the following and made available at https://interactca20120.
org/wgs/datasets-2/, have been collected by individual institutions and pub-
licly shared to support the research activities and scientific collaboration within
WG1. While we briefly describe the up-to-now contributed datasets below,
WG1 remains open to further contributions, which will be made available at
the same website.

1. Indoor high-speed channel sounding at sub-6GHz and mmWave
[115]

Vienna University of Technology conducted measurements to compare
sub-6GHz (2.55, 5.9 GHz) and mmWave (25.5 GHz) indoor wireless chan-
nels in a high-speed scenario. For all measured scenarios, the wireless
channel is measured with the same transmitter and receiver antenna po-
sitions, but with different center frequencies and velocities. This allows
a direct comparison of the measured wireless channel in terms of fad-
ing environment and channel statistics. Results are provided in terms of
time-variant channel transfer functions for discrete-time (snapshots) and
frequency (subcarriers).

2. UPCT Indoor 5G measurements at 1-40 GHz [116]
UPCT conducted indoor LoS MIMO measurements in the frequency range
from 1 GHz to 40 GHz. Using a Vector Network Analyzer (VNA) setup,
characteristic parameters including the relative received power, path loss,
root mean square DS, and K-factor were extracted and compared with
ray-tracing simulations.

3. Measured dataset for performance analysis of wireless systems
in real-world 60 GHz indoor channels [117, 118]
This dataset employs channel measurements of an indoor office environ-
ment at 60GHz from the measurement campaign held in Brno University
of Technology (BUT), at the Department of Radio Electronics (DREL).
The following measurements are employed [117] for the characterization
of an indoor channel model for an IEEE 802.11ad single carrier physical
layer (SC-PHY) MATLAB-based simulator, which is also provided.

4. Transmitter Identification and Fingerprinting based on RF Im-
perfections [119, 120]
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These measurements are a compilation of the results [119] of experiments
run on a series of datasets gathered in the Future IoT/Cognitive Radio
testbed [120]. Such measurements can be employed for the detection of
hardware imperfections in RF transmitters in order to identify a specific
transmitter among others.
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7 Modeling methodologies

by Tommaso Zugno, Enrico Vitucci, Nicola di Cicco, Diego Du-
pleich, Wei Fan, Ke Guan, Danping He, and Andrej Hrovat

In the following sections, we present different channel modeling methodolo-
gies that have been proposed in the literature, including stochastic, map-based,
ray-based, and ML-based approaches. In each section, we describe the main
concepts, overview the state of art, and summarize recent developments.

7.1 Stochastic models

The characterization of wireless channels is of paramount importance for the
design and evaluation of wireless systems, however, a deterministic knowledge
of the channel behavior is difficult and impractical to obtain, as it requires to
perform measurement campaigns or to run complex simulations. For this reason,
a common approach is to adopt models which represent wireless channels as a
stochastic process whose properties resemble real propagation phenomena. In
this regard, GSCM is one of the most widely adopted class of stochastic channel
models. GSCMs adopt a stochastic approach to account for the presence of
scatterers in the environment, and apply geometric properties to model signal
propagation through multiple paths. The main advantage of this method is the
possibility to easily represent different scattering environments by changing the
parameters and/or probability distributions that model the physical properties
of scatterers.

y

m-th cluster

i-th ray

z

x

Figure 10: Geometry-based stochastic channel model.

As represented in Fig. 10, signal propagation between a transmitting and
a receiving node is modeled by the superposition of multi-path components
(MPCs), each representing a plane wave travelling along a different path. MPCs
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Figure 11: Block diagram of the 3GPP GSCM model, from [111].

depart from the transmitting node with different angles, and arrive at the re-
ceiving node from different directions, with different amplitudes, delays, and po-
larizations. Typically, MPCs that exhibit similar characteristics are grouped to-
gether into clusters. Characteristics of each cluster (e.g., power, delay, AoA/AoD,
polarization, etc.) are derived from random variables whose distribution de-
pends on the scenario under consideration.

Over the years, several works proposed GSCMs able to represent different
scenarios and use cases, such as 3rd generation partnership project (3GPP)
TR 38.901 [111] (depicted in Fig. 11), COST 259 [121], Winner II [122], and
Quadriga [123]. In particular, 3GPP TR 38.901 was selected as the reference
model for the evaluation of cellular systems by the standardization community.
This models supports a wide frequency, between 0.5 and 100 GHz, and the
modeling of different propagation scenarios, including urban, rural, and indoor
scenarios, within the same framework. Despite offering a high scalability and
good generalization properties, it presents inherent limitations related to its
fully-stochastic nature. For example, it does not provide a good support for
the modeling of channel dynamics and inter-link correlation, thus preventing
spatially-consistent evaluations. These issues can be overcome by adopting other
approaches, such as the one described in [124], albeit at the cost of increased
complexity and reduced number of applicable scenarios [1].

As part of the COST INTERACT action, GSCM models have been used
for the performance evaluation of emerging use cases, such as vehicular and rail
communications. In [125], authors used a GSCM to build a digital twin for as-
sessing the reliability of vehicular communications, while in [126], authors used
a GSCM to perform spatially-consistent real time simulation V2X scenarios.
Moreover, in [127] authors used a GSCM to train a frame error rate prediction
algorithm for wireless communications among vehicles. In [128] and [129], au-
thors designed and validated a new model for train-to-train communications.

Other works proposed new approaches to overcome the limitations of current
GSCM models for the simulation of next-generation wireless systems. Indeed,
the introduction of novel paradigms, such as integrated sensing and commu-
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nications, reflecting intelligent surfaces, and ultra-massive MIMO, require fun-
damental changes in the way the channel is modeled. For example, in [130]
authors extended the 3GPP TR 38.901 framework [111] for the joint modeling
of communication and sensing channels. They introduce the concept of sensing
clusters and describe the additional steps for the generation of the corresponding
parameters. In addition to delays, powers, and angles, rays in sensing clusters
are characterized by echo angles and radar cross section. Pathloss and shadow-
ing are applied individually for each sensing cluster, and a multi-bounce model
is applied to map scatterers to geometric positions. In [131], authors proposed
a GSCM for RIS-assisted communications which accounts for movements of ter-
minals and clusters, and the time evolution of clusters in space. The channel
impulse response is expressed as a summation of the direct path between BS and
UT, and the indirect path reflected by the RIS. The reflecting properties of the
RIS are modeled through the Φ matrix which includes the phase responses of
the reflecting elements. A birth-death process is used to simulate the evolution
of clusters in the space domain. In [132], authors developed a 3D geometry-
based double-spherical model for ultra-massive MIMO communications at THz
frequencies which accounts for the nano-material properties of plasmonic-based
arrays.

7.2 Map-based models

One of the issues regarding the GSCM approach is the modeling of spatial
consistency among different links. To solve this issue, other approaches applying
ray tracing (RT) principles based on simplified maps of the environment have
been proposed [133].

An example of such approach is described in [134]. This model generates
the channel response following the step procedure represented in Fig. 12. The
first step consists of creating the map, including the definition of transmitter
and receiver positions, and the placement of blockers and scatterers. Then, a
simplified RT algorithm is used to compute the propagation paths and deter-
mine delays, departure and arrival angles. Finally, the channel impulse response
is obtained by modeling the interaction of paths with blockers and scatterers
according to the main propagation phenomena, including LoS propagation, re-
flection, diffraction, scattering, shadowing, and antenna patterns.

Other models based on the same principle are available, the most popular
being the 3GPP map-based model [111] and the NYUSIM model [135]. More
recently, the authors in [136] proposed a map-based channel model for UAV
communications at mmWaves, while [137] presented a model for the evaluation
of integrated sensing and communications. Moreover, a novel site-level deter-
ministic model adopting a grid-based approach was presented as part of the
COST INTERACT action [138].
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Figure 12: Block diagram of the 3GPP map-based model, from [111].

7.3 Ray-based models

Ray-based approaches relies on the high frequency approximation, where elec-
tromagnetic waves are modeled as rays, following the principles of geometric
optics for reflection and transmission. Two main approaches can be identified:
(i) image ray tracing (RT) and (ii) ray launching (RL). Ray tracing methods
compute all rays that can reach the receiving point, e.g., by means of the Im-
age Method represented in Fig. 13a, then apply attenuation factors to each ray
to account for the propagation phenomena. The main drawback of this ap-
proach is the computation time, which increases exponentially with the number
of interactions. In ray launching methods, multiple rays are launched from the
transmitter into different directions according to a proper angular discretization,
as depicted in Fig. 13b. As in RT, the field propagated by each ray is computed
by taking into account all basic interaction mechanisms. Rays that reach the
receiver contribute to the overall channel response, while those that miss the
receiver or become too weak are dropped and not propagated further. In this
case, the computation time increases with the number of launched rays; there-
fore, this parameter controls the trade-off between accuracy and computation
time.

When applied to highly dynamic scenarios, both methods still suffer from
the problem of high computational complexity that prevents their use in real-
time. One example is the case of vehicles moving at high speed and transmit-
ting/receiving or generating scattering in a dense urban environment. Imple-
mentations on game engines like the one proposed in [126], solved this problem
by adopting GPU parallelization. Other emerging paradigms like dynamic ray
tracing (DRT) can then be applied to mitigate complexity growth [139]. Since
the multipath structure remains essentially the same within a given time in-
terval TC , it is possible to predict the multipath evolution on the base of the
current multipath geometry, assuming constant speeds and/or accelerations for
moving objects within TC , and using analytical extrapolation formulas. This
is done without re-running a full RT for every ”snapshot” of the environment,
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therefore providing substantial savings in terms of computation time. The DRT
is then a helpful tool for decreasing computational complexity and accelerating
channel calculation, but also its use in real-time becomes possible. When DRT
is embedded in a mobile radio system and used in real-time, ahead-of-time (or
anticipative) channel prediction is possible, thus opening the way to interesting
applications. The DRT method is flexible enough to be employed either in a
fully deterministic case, or when the path geometry is derived through statistical
realizations of the environment, according to the GSCM approach. Therefore,
a natural way of future development of highly dynamic channel modeling lies in
further optimization of the execution time via merging the DRT approach with
the game engine-based GSCM framework.

Another recent development is the integration of RIS models into RT/ray
launching algorithms in order to carry out realistic RF-coverage evaluations in
RIS-enabled communication scenarios. In [140], a previously developed RIS
macroscopic model based on a ”Huygens-like” approach [141] has been embed-
ded in a RT tool, and the performance of the RIS-based solution has been
analyzed in simple reference scenarios by modifying a few simple parameters of
the model. The results show that a gain of about 15–20 dB can be obtained in
blind-spot locations with proper RIS placement and configuration, without the
use of any additional active radio head, even when using simple designs such as
pre-configured lossy phase-gradient metasurfaces.

Future studies within the COST INTERACT action will deal with the de-
velopment of a fully ray-based RIS model, which allows for better integration
into RT algorithms and more realistic predictions involving multiple-bounce in-
teractions where the RIS can be in any place in the interaction chain.
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7.3.1 Challenges for mmWave & (sub)THz channel modeling

For any RT simulator, every object which exists within each scenario resembles
kind of a Lego “building block”. Once all the building blocks are realized, any
communication scenario can be implemented. With the available propagation
models, the full-dimensional channel information can be obtained by employing
the RT methodology [142]. Nevertheless, the actual implementation of RT tech-
niques within the THz band still faces significant challenges which need to be
considered for future research [143]. Some of these challenges will be presented
next as open research problems.

Ultra-massive MIMO (UM-MIMO) systems generate very narrow beams
to compensate for the very high path losses encountered in the THz band. Since
the RT experiments are site-specific, the correlation of all the sub-channels cre-
ated by UM-MIMO antennas can be characterized by RT. However, with pos-
sibly several hundreds of antennas, the computational and storage capacities
for such systems will dramatically increase [144]. One possible solution to this
problem is to develop a cloud-based RT with high computation and storage
capabilities.

Antenna beam management is another important challenge which needs
to be carefully considered. Its main function is to steer the antenna towards
the strongest ray/path and thus supporting the mobility of UE. The current
assumption for 5G mmWave is that the antenna beam from the BSs sweeps all
possible directions every 5 ms, while the UEs will transmit a short message as its
response. However, since the THz beam will become much narrower, the time
required to check all possible directions will significantly increase. With the aid
of RT, firstly, the omnidirectional antenna can be used to directly identify the
strongest path. Then, the BS or/and UE can select their own beam following
the RT simulation results in advance.

Complex multipath is another challenge caused by the “multi-structures”
configuration. One solution for identifying the characteristics of the complex
multi-paths is to integrate the individual transfer functions of the propagation
graph with the aid of RT. This is a new hybrid channel modeling approach
which is based upon the join processing of RT and graph theory. It is our belief
that such hybrid approach is a promising approach for the accurate and efficient
channel modeling of such dense MPCs.

7.4 ML-based approaches

Electromagnetic propagation is a complex phenomenon, as it depends on mul-
tiple, different factors, including the properties of the propagating signal (e.g.,
intensity, frequency, bandwidth, polarization, etc.), the geometrical and elec-
tromagnetic characteristics of the environment, and the specific position of the
transmitter and the receiver inside the environment. As ML methods are inher-
ently fit to take care of complex problems [145], their use for wireless channel
characterization has been attracting increasing attention over the last years
[146], [147], [148].
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If physical insight is heavily limited by the complexity of the target problem,
a ML-based propagation model basically consists of a black box, that provides
the existing, underlying pattern between some input data or between some out-
put labels and the corresponding input features without any clear explanation.
Conversely, ML can be aimed at improving the accuracy of some baseline prop-
agation model through the introduction of effective correction factors [148] in
case some physical/theoretical insight can be inferred.

To what extent a ML propagation tool can reliably mimic the electromag-
netic propagation process depends on the accuracy of the training stage, where
a large amount of propagation data are effectively fed to the tool in order to
learn the way the wireless channel actually behaves. Training therefore repre-
sents a crucial task that must be carefully planned and carried out. Propagation
prediction through a well trained ML tool is expected to be accurate and fast at
the same time, to the extent that it can be relied on offline, i.e., for the design
of wireless networks and systems, but also in real time, i.e., to assist the system
(either end users or network equipment) during working operations.

We now provide a concise overview of the main learning paradigms in ML,
contextualized by some illustrative applications in propagation. We then elab-
orate on practical guidelines for choosing the most appropriate ML algorithm
for a given task, and we provide relevant pointers for future research direc-
tions of interest. The fundamental learning paradigms in ML are supervised
learning (SL), unsupervised learning (UL), and reinforcement learning (RL).
In SL, the task is to learn an input-output mapping given a finite dataset of
input-output examples. SL problems include, but are not limited to, regression,
classification, forecasting, ranking, and segmentation. Examples of SL problems
in propagation are Path Loss regression [149] and LoS prediction [150]. In UL,
the task consists of learning patterns and/or extracting useful information from
data. UL problems may include clustering, dimensionality reduction, feature
selection, density estimation, representation learning, and synthetic data gener-
ation. Finally, in RL, the task consists of learning a policy that, after repeated
interactions with a dynamic system (or environment), maximizes the long-term
accumulation of reward signals. RL is commonly applied to optimization and
control tasks for which SL, i.e., learning to imitate an optimal control policy,
is unfeasible (e.g., due to the problem of deriving an optimal policy being in-
tractable). Relevant examples in propagation include antenna tilt control [151]
and coordinated beamforming [152].

After identifying the learning paradigm that is most pertinent for a given
task, the next crucial design point is the choice of the algorithm. In this regard,
the “No Free Lunch” theorem states that all ML algorithms are “equally bad” if
averaged over all possible optimization tasks [153]. While this result may sound
discomforting, it tells us that the choice of an ML algorithm is mainly driven
by the structure of the data at hand, i.e., one should choose an algorithm that
can be proven (either theoretically or empirically) to be most efficient for the
structure of the input data. Broadly, we can discriminate between tabular (or
structured) data and unstructured data. As the name implies, tabular datasets
consist of data that can be structured as a table, such that each row represents
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a single observation, and each column represents a distinct feature. For SL
problems, empirically, the best-performing models for tabular data are ensem-
bles of decision trees (DTs), such as Random Forests and, more prominently,
gradient boosting decision tree (GBDT) models [154]. GBDT models achieve a
remarkable trade-off between ease of training, robustness to hyperparameters,
model expressiveness and generalization capabilities, and are therefore advised
when dealing with SL problems on tabular data. Conversely, when dealing with
unstructured data (such as images, graphs, point clouds, meshes, etc.), deep
learning (DL) model architectures become more prominent. Specifically, while
the multi-layered perceptron (MLP) is a popular “one fits all” DL architecture,
it is advised that the choice of a DL architecture is motivated by the presence of
the appropriate “inductive biases” for the given data [155]. A relevant example
are convolutional neural networks (CNN), which are among the state-of-the-art
for Computer Vision problems [156]. By learning local filters that are convolved
with spatial 2D feature maps, CNNs are able to efficiently exploit the spatial
correlations in image data, i.e., the CNN architecture possesses the right in-
ductive bias for processing image data. Similarly, Recurrent Neural Network
(RNN) architectures such as Long Short Term Memory networks (LSTM) [157]
and Gated Recurrent Units (GRU) [158] possess an inductive bias that makes
them effective for processing sequence data. Note that an inductive bias, while
desirable, is not mandatory for learning an effective model. In this regard,
Transformer architectures [159] (the popular ChatGPT model [160] is one such
example) have completely superseded RNNs in learning from large-scale natural
language thanks to their expressiveness, scalability and ease of parallelization,
albeit not possessing any particular inductive bias.

A recent family of models particularly relevant for propagation pertains to
the field of Geometric Deep Learning [161]. Indeed, it can be argued that
the laws of geometry are pervasive in propagation (e.g., in RT algorithms and
Stochastic Geometry), such that many fundamental algorithms in propagation
operate on data that displays some geometric properties. In this regard, Ge-
ometric Deep Learning aims to devise model architectures able to exploit the
underlying geometrical properties of the input data. The aforementioned CNNs
are a prominent example of Geometric Deep Learning applied to Euclidean
domains (i.e., 2D feature maps). A generalization of CNNs to non-Euclidean
domains are Graph Neural Networks (GNNs) [155, 161], which have been ap-
plied with success to physics simulation [162] and processing of 3D point cloud
data [163]. As such, Geometric Deep Learning holds an untapped potential for
breakthrough applications in propagation.

Finally, one major limitation of complex ML models is their lack of inter-
pretability. Specifically, while tree-based models retain some degree of inter-
pretability (e.g., by the means of feature importance), DL models behave fun-
damentally as black-boxes, which may hinder their deployment in risk-sensitive
application scenarios. With the goal of opening said black boxes and deriv-
ing precious insight on the learned knowledge, several eXplainable AI (XAI)
algorithms have been developed in literature. A prominent example are SHap-
ley Additive exPlanations (SHAP) [164] which, given an arbitrary black-box
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function, computes the impact of every individual input feature to the final out-
put. XAI approaches for specific model architectures have also been developed.
For instance, GradCAM [165] interprets CNNs by highlighting on the input
images where the model ”looks” for taking a decision. GNNExplainer [166] in-
terprets GNNs by deriving the subgraphs of the input graph that are the most
influential for the output predictions. Recent advances in ML interpretability,
particularly relevant for propagation, are Symbolic Regression algorithms [167].
Briefly, the task in Symbolic Regression consists in finding the mathematical
expression, modeled as a sequence of tokens (i.e., mathematical operators and
physical quantities) that provides the best-fit to the data, balancing the delicate
trade-off between goodness-of-fit and complexity of the derived expression. The
associated optimization problem is of combinatorial nature: as such, RL can be
leveraged for efficiently exploring the space of all possible symbolic expressions.
Overall, model interpretability can provide precious insight on the underlying
physical laws present in raw measurement data, complementing domain-specific
knowledge.
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8 Channel parameter estimation

by Wei Fan, Xuesong Cai, Diego Dupleich, Ruisi He, and Bo Ai

8.1 Parameter estimation techniques

Channel parameter estimation aims at extracting propagation parameters such
as propagation delay, angles, polarimetric amplitudes, etc. of path components
from the measurement data. COST INTERACT has contributed to the de-
velopment of such algorithms. For example, the authors in [168] proposed a
maximum-likelihood estimation algorithm to deal with channels that exhibit a
mixture of independent dense multipath components (DMCs), which is in con-
trast to the commonly assumed model of single DMC mode. An auto-encoder
was proposed to infer the order of DMC modes and for initializing the parame-
ters of the DMCs. In general, channel parameter estimation techniques can be
mainly classified into four categories: spectra-based techniques, subspace-based
techniques, sparsity-recovery-based techniques, and maximum-likelihood-based
techniques.

8.1.1 Spectra-based techniques

Bartlett beamforming is the most classical spectra-based method, aiming to find
the direction(s) with dominant power(s) [169]. Its variant, a frequency-invariant
beamformer for uniform circular arrays can also be found in [170]. The basic
idea was to pre-compensate to frequency-dependent phase variation so that
two dimensional (2D)-fast Fourier transform (FFT), i.e., beamforming, can be
efficiently applied to finding the dominant paths in azimuth and delay domains
jointly. For mmWave frequency bands, a widely applied spectra-based method is
to obtain the joint angle-delay spectrum according to the channel measurements
by rotating horn antennas to different directions [171, 172, 173, 83]. These
methods are straightforward and with relatively lower complexity. However,
system responses such as antenna radiation patterns are usually embedded in
the resulting spectra, making it difficult to separate the propagation channels
from the sounder hardware, not to mention the low resolutions.

8.1.2 Subspace-based techniques

Among the subspace-based methods, the well-known ones are MUltiple SIg-
nal Classification (MUSIC) [174] and unitary Estimation of Signal Parameter
via Rotational Invariance Techniques (ESPRIT) [175], and their variants can
be found in, e.g., [176, 177, 178, 179, 180]. In the early development of these
techniques, the basic assumption is that propagation paths are uncorrelated so
that the covariance matrix of the received signals can be decomposed into signal
subspace and noise subspace [174]. By examining the distances (orthogonality)
between steering vectors and the noise space, a spectrum can be obtained with
its peaks indicating path directions. Intuitively, if a steering vector is orthogonal
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to the noise space, it means that it belongs to the signal space, i.e., contribut-
ing to the received signals. Later on, these techniques were extended to dual
domains such as delay vs. frequency covariance matrix. The main limitation
is the deficiency in resolving a large number of paths and requiring a certain
number of snapshots to obtain a sample covariance matrix.

8.1.3 Sparsity-recovery-based techniques

Sparsity recovery algorithms [181, 182] are developed based on the assumption
that the channel exhibits sparsity in parameter domains, i.e., only a few paths
contributing to the received signals, although the assumption is still questionable
even in mmWave frequency bands [183]. By exploiting specific optimization
principles, e.g., convex optimization, channel parameters can be recovered.

8.1.4 Maximum-likelihood-based techniques

Despite the high complexity of maximum-likelihood-based estimation algorithms,
they can extract the propagation parameters that are properly defined in the
signal model with a high resolution that approaches the theoretic lower er-
ror bound, i.e., Cramér-Rao Lower Bound (CRLB). The most widely used
maximum-likelihood-based algorithm is the SAGE algorithm [184]. It is a fur-
ther enhanced algorithm based on the Expectation-Maximization (EM) princi-
ple [185] that is theoretically proven to converge to a local maximum of the likeli-
hood objective function. In SAGE, the high-dimensional estimation/optimization
problem can be decomposed into several one-dimensional problems, leading to
much lower complexity and faster convergence. In [186, 187, 188], variants of the
SAGE algorithm can also be found for mmWave wideband large-scale arrays,
where the trajectories in delay domain across the array aperture are exploited
for effective initializations and interference cancellation. The SAGE algorithm
usually assumes that the propagation paths are well-resolvable. However, it is
possible that due to the scattering effect of rough surfaces, the resulting MPCs
can be very dense in delay and angle domains that cannot be well resolved by
the intrinsic ability of the sounder. In such cases, one needs to modify the signal
model to consider these dense MPCs, i.e., DMCs, as colored noises (in addition
to white Gaussian noises) with certain power profiles for a better estimation
of other discrete MPCs, which is basically the RIMAX algorithm [189]. Al-
though there exist not a few different parameter estimation techniques, future
mmWave and THz propagation channels will pose more challenges due to much
larger bandwidths, much larger array apertures, etc. Spherical-wave propaga-
tion, channel birth-death on the array, frequency-dependent responses of an-
tennas and sounders, etc., will make the signal model much more complicated,
meaning that low-complexity yet still high-resolution estimation techniques are
still in need.

Another important consideration for parameter estimation is that the sys-
tem response of the channel sounder must be well characterized for a realistic
signal model. Otherwise, the mismatch of the signal model from reality can
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result in many ghost (erroneous) paths estimated [27]. The response of cables,
power amplifiers, filters, converters, etc., of the channel sounder can be easily
calibrated through back-to-back measurements, i.e., directly connecting Tx and
Rx without antennas. For antennas or antenna arrays, they can be placed in an
anechoic chamber to measure the 3D responses of antenna elements at discrete
angles. The measurement data can be later on exploited to interpolate the re-
sponses at arbitrary angles. There are different ways to do this, which include
direct (linear or non-linear) interpolation, spherical harmonics, and Effective
Aperture Distribution Function (EADF) [190]. Direct interpolation is straight-
forward but non-analytic. Alternatively, one can transform the measured pat-
tern from the spatial domain to another domain using basis functions, either
spherical harmonics or Fourier basis (EADF). Using a forward transform, the
transformed spectra are obtained and then utilized to recover spatial patterns.
There is also a possibility to compress the measurement data if the spectra are
concentrated so that the unimportant components in the transformed domain
can be removed. A practical application of EADF in dynamic mmWave channel
sounding using 128×256 switched arrays can be found in [60].

8.1.5 Future challenges and directions

6G is envisioned to support applications beyond the current 5G mobile use sce-
narios, which will pose stringent requirement on the communication systems in
terms of data-rate, latency, reliability, and so on. To meet those demanding
requirements, a raft of advanced radio technologies are envisioned, e.g. utiliza-
tion of higher frequency spectra (e.g. up to sub-THz frequency bands), higher
system bandwidth (e.g. up to a few GHz), and larger-scale multi-antenna sys-
tems (e.g. large-scale or extremely large-scale antenna), utilization of RIS, etc.
The advancement in 6G radio technologies have posed significant challenges
to the channel estimation parameter. For example, the extremely large scale
antenna array will bring a few new challenges for the channel parameter estima-
tion: near-field and spatial non-stationary effects. State-of-the-art algorithms,
which are developed based on plane wave model and spatial stationary channel
might fail to address all the new features introduced by the massive MIMO
systems. The narrow-band assumption might also be violated for 6G radio sys-
tems that potentially utilize the ultra-wide-band technology, which should be
properly considered for developing channel parameter estimator. As for the
sub-THz/mmWave channel measurements, the required phase accuracy might
be difficult to achieve, though a few works on phase compensation concept have
been reported to achieve coherent phase measurement for virtual antenna ar-
ray systems. Therefore, it would be desirable to develop channel parameter
estimators, which is robust to phase measurement inaccuracy.

8.2 MPC Clustering

Multipath clustering and identification have been important for channel model-
ing. ML naturally meets the need to group multipath components (MPCs) with
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similar channel characteristics, and some well-designed clustering algorithms
which naturally incorporate propagation characteristics have drawn great at-
tention [191, 146] for cluster-based channel modeling, and many researches have
been conducted in COST INTERACT. Clustering algorithms can be generally
categorized into: i) Shape-based; ii) Distance-based; iii) Density-based; and iv)
Computer vision-based clustering.

8.2.1 Shape-based clustering

Shape-based clustering involves revealing cluster structure of MPCs in power-
delay domain. For example, MPCs belong to the same cluster are supposed
to have a PDP that follows a single exponential decay, according to the Saleh-
Valenzuela channel model. To recognize clusters in PDP, a fitting method is
used to check if envelope shape of MPCs matches a particular distribution, as
shown in Fig. 14(a). This method adjusts cluster members by seeking the best
fitting result and it is able to accurately identify MPC cluster [192]. Several
shape-based methods have been proposed: i) training a hidden Markov model
(HMM) to learn distribution of MPCs in PDP and optimizing cluster members
using the Viterbi algorithm; ii) using an observation window to separate large
cluster and applying a threshold of slope to improve clustering accuracy on small
clusters; iii) using kurtosis to measure peakedness of a distribution and applies
region competition to divide MPCs into different clusters [193]. In summary,
shape-based cluster identification has several advantages including not requiring
much prior knowledge about number of clusters and having a relatively low
computation complexity. However, its limitation is the lack of angle information
during clustering, which can impact identification accuracy.

8.2.2 Distance-based clustering

Distance-based clustering measures similarity between different MPCs based on
distance , which is defined in terms of delay, angle of arrival (AoA), and angle
of departure (AoD), as shown in Fig. 14(b). Commonly used distance mea-
sures for MPC clustering include squared Euclidean distance (SED), normalized
Euclidean distance (NED), and multipath components distance (MCD). SED
focuses on natural difference between each parameter, while NED focuses on
ratio difference. Sequential clustering-based algorithms have been proposed to
identify MPC clusters using SED. However, to compare parameters in different
domains, it is necessary to normalize parameters to the same scale. MCD has
been proposed to address this issue by normalizing delay and angle before calcu-
lating distance, which is found to have fairly good performance [194]. Further,
many distance-based clustering algorithms such as hierarchical tree clustering,
K-power-means (KPM), and fuzzy-C-means (FCM) have been proposed and
widely used.

48



Delay

P
o

w
er

 i
n

 d
B

Cluster

Shape-Based Clustering

(a)

(d)

Computer Vision-Based Clustering

Distance-Based Clustering

(b)

Cluster Centroid

Density-Based Clustering

(c)

Density Centroid

Figure 14: Illustration of different clustering algorithms.

8.2.3 Density-based clustering

In the natural propagation environment, MPC are grouped and the MPC near
cluster centroid usually have higher density than those at the edge of cluster.
Density-based clustering algorithms, such as DBSCAN, can identify MPC clus-
ters based on distribution and density property, as shown in Fig. 14(c). These
algorithms calculate MPC density for clustering and do not require prior knowl-
edge such as cluster number and cluster centroids initial position. However, how
to measure MPC density is important to algorithm performance. To obtain im-
proved performance, [195] firstly proposes the perspective to consider physical
propagation mechanism for clustering algorithm by designing MPC density. It
proposes a novel aspect of MPC kernel-power-density to well incorporate the
modeled propagation behavior of MPCs into clustering algorithm, and it ob-
tains significant performance gain in terms of low computational complexity
and high clustering accuracy.

8.2.4 Computer vision-based clustering

Computer vision-based clustering exploits image processing methods to identify
MPC clusters based on visual criteria such as shape of potential cluster, distri-
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bution pattern of MPC delay and angle, as shown in Fig. 14(d). One example
is the Hough transform-based clustering, which uses the Hough transform to
recognize trajectory of MPCs in delay domain and merges the recognized tra-
jectory into clusters. Another example is the PAS-based clustering and track-
ing (PASCT) algorithm [196], which uses the maximum-between-class-variance
method to separate potential cluster groups from background noise and further
divides the clusters by using density-peak-search method. These methods follow
an intuitive approach and provide results that conform to human observation
whereas also benefit from the rapid development of computer vision.

8.2.5 Future Work

Many long-standing problems remain unsolved on this topic. For example, for
time-varying non-stationary channels, the existing algorithms still need to be
improved significantly. Supervised AI-based clustering and tracking methods
are worth receiving more attention in the future, especially considering the phe-
nomenal increase in both the amount of collected channel measurement data and
the available computing power. Moreover, drawbacks still exist with respect to
algorithm complexity, threshold choices, and assumptions about prior knowl-
edge. Algorithms with few prior knowledge about clusters should be further
developed.
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9 New technologies

by Joonas Kokkoniemi, Marco di Renzo, Narcis Cardona, Ruisi
He, Bo Ai, Wei Fan, Xiping Wang, Ke Guan, Tomaz Javornik,
Franco Fuschini, Yang Miao, Mi Yang, Dan Fei, Guido Valerio,
and Julien Sarrazin

9.1 Path Loss Measurements and Modeling for RIS

In recent years, RISs have been under active discussion and investigation as a
promising technology to enable future 6G networks. RISs are artificial electro-
magnetic surfaces comprised of large numbers of sub-wavelength unit cells or
antenna elements. Those are either very small elements (≪ λ) forming a larger
artificial surface (a metasurface) or individually controllable antenna elements
such as in reflect arrays. The RISs can flexibly control the parameters of wireless
signals, such as phase, amplitude, and polarization, thus enabling the emerging
concept known as “smart radio environment” [197]. The core principle of the
RISs is to be able to capture a part of the radiated power with the aperture of
the RIS and redirect it via reflection towards wanted direction by manipulating
the phase (and amplitide) of the insident radiation. Usually the goal is to do
beamsteering the amplify certain directions, but as mentioned above, it is also
possible to manipulate the signal itself. Therefore, the RISs allow the manip-
ulation of the radio channels. This is traditionally impossible and usually the
only way to manipulate the signals is via antennas and arrays of those. Hence,
the RISs give an interesting opportunity for added control that can be used to
overcome problems, such as signal blockages and cell edge signal amplification.

Two important use cases for RISs in the literature are shoot-through RIS and
reflective RIS. The former can be used for beamforming close to antenna, but
the latter is more important what comes to channel modeling and especially
manipulation of the channel coefficients. In this section, we talk exclusively
about reflective RISs and the channel modeling related to those. So far, some of
the challenges with RIS channel models is the rather limited number of physical
prototypes and multitude of options and ways to manufacture RISs. Later in
this section we give some examples of the channel modeling activities related
RISs.

9.1.1 RIS channel modeling challenges

Generally speaking, some of the challenges in RIS channel modeling arise from
the fact that the behavior of the RIS itself depends on how it’s made and how it
as been configured. The basic communication scenario is that we have a Tx, RIS,
and an Rx. The channel between Tx and RIS and RIS and Rx are traditional
channels, e.g., free space of fading channels. The phase shifts introduced by
the RIS are then optimized minimize the total loss in the cascaded Tx-RIS-Rx
channel. Because the RIS is an active element, often assumed to be controlled
by the base station, a closed formed macroscopic channel models are hard to
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derive as the RIS by definition reconfigures the channel coefficient based on the
particular situation. Therefore, also the total path loss depends on the entire
system setting and outcome of the optimization problem.

Whereas wireless communication engineers in the past have resorted to
macroscopic channel models in system analysis and optimization, there are also
other challenges what comes cascaded RIS channels. For instance, the real sys-
tems are almost never random. The network engineers design the network based
on the maximization of the signal power in some local are and availability of
locations for the base station and supporting hardware. In the case of RISs
this can mean that the engineer may try to arrange a very good LOS channel
between the base station and RIS whereas the RIS-user channel can be normal
mobile fading channel, for instance. But this is just one of many options from
network design point of view and the individual channels depend on the location
and how the network elements can be placed. This makes the general channel
modeling very challenging and the channel losses and potential gains achieved
by RISs depend on the deployment environment. Especially in rural setting
where distances are long, RISs are most likely not going to provide good gain as
the reflected energy decreases fast with distance. However, in the case of urban
and indoor scenarios where RISs are expected to be the most beneficial, there
are powerful tools avaialable to test and optimize networks via simulations.

Ray tracing has become an important tool to study channel especially at high
frequencies where traditional channel modeling is challenging due to difficult
channel measurements. As the ray tracing relies on fixed 3D maps, they have
also been used extensively in network design in order to optimize the network
element placement. Ray tracing is therefore also a very good tool in studying
RIS channels in various scenarios, e.g., as shown in [198] in urban environment.
The downside of the ray tracing is that the simulation always require accurate
3D models of the desired environment. The upside is that testing the network
elements in simulation environment is very flexible and fast. Therefore, the ray
tracing is very good tool to test and evaluate the RISs as well. This is somewhat
related to digital twins in which we have a replicated digital environment where
we can test, e.g., RISs, but theoretically also optimize those in real time in the
case of actual physical deployment.

Ray tracing is particularly powerful in system evaluations and performance
testing, but can be locally used for channel modeling as well. The challenge
in channel modeling tends to be that the results are representative for that
particular environment, but not in general. However, it is still much faster
to generate data with ray tracers that by real measurements. Therefore, an
appealing option is to calibrate ray tracers with real measurement data in order
to extend the measured data. In the case of RIS this still does not take away
the difficulty of statistical modeling of an active reconfigurable element that
can take many forms and sizes. Ray tracing can still be very efficiently used
in evaluation of the RISs in the desired environment in order to deside where
to place it/them and what kind of gain do those give in the scenario in hand.
Whereas there are too many channel scenarios to discuss herein where RISs
could be useful and what those require from the channel modeling, in below we
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give some examples of the works related to RIS channel modeling.

9.1.2 RIS channel models from literature

The path loss and propagation are basic characteristics of wireless channels.
The channel represents the basic relation between the wireless signal power and
the transmission distance, which can provide information on how far a wireless
signal can be successfully transmitted. Due to the importance of characterizing
the path loss and channel reciprocity characteristics of RIS-assisted wireless
communications, researchers have recently conducted related studies that are
based on different analytical assumptions and approaches [199],[200].

Di Renzo et al. [201] derived asymptotic scaling laws of the path loss as a
function of the transmission distances and the size of the RIS in the far-field
and near-field cases. The results are obtained by leveraging the scalar Huygens-
Fresnel principle in a two-dimensional space. Garcia et al. [202] calculated the
radiation density of the scattered field in the near-field and far-field under the
assumption of dipole antennas and discussed the scaling laws as a function of the
transmission distances numerically. Ellingson [203] proposed a physical model
for the path loss of an RIS-assisted wireless link under the assumption that the
antenna gain of the transmitter/receiver is constant over the RIS. Najafi et al.
[204] developed a physics-based RIS path loss model, in which the impact of
grouped unit cells on the wireless channel is obtained by solving the integral
equations for electromagnetic vector fields under the far-field assumption. Dan-
ufane et al. [205] generalized the model in [201] to a three-dimensional space
by using the vector generalization of Green’s theorem, and characterized the
scaling laws of the path loss as a function of the transmission distances and the
size of the RIS based on scattering theory. Wang et al. [206] proposed a radar
cross section-based path loss model that introduces an angle-dependent reflec-
tion phase behavior of RIS unit cells. Gradoni and Di Renzo [207] developed a
path loss model that is based on the theory of mutual impedances of thin dipole
antennas. The end-to-end channel model resembles a MIMO communication
system and considers the mutual coupling among RIS unit cells. Recently, Di
Renzo et al. [208] proposed a path loss model, based on scattering theory, as-
suming that the incident signals are not constant over the RIS elements. A
summary of the above-mentioned research works on RIS path loss modeling is
available in Table I of [209].

9.2 Channel Measurements and Modeling for ISAC

In the last decade, radar has been considered in some works as the natural
complement to communications, in which the radar-based sensing is a default
technology. In [210] a low-complexity algorithm for joint radar and communi-
cations in automotive is developed, while in [211] the sensing from radar is used
to assist the beam-steering at mmWave links. The sensing information is used
to predict the communications channel in [212].Nevertheless, when we refer to
ISAC inthis paper, it is done for communications-centric ISAC, meaning that
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sensing is implemented using the communication signals from one or more radio
access nodes. To this end, in COST INTERACT, authors in [213] are develop-
ing solutions for joint sensing and communications (JSAC), with parallel sensing
and communication waveforms that share the same bandwidth.

ISAC has become a design paradigm for 6G, for which understanding and
modeling the behaviour of the sensing and the communications channels simul-
taneously is crucial. The main ISAC applications in 6G mobile networks are
vehicular communications (V2X), sensing as a service, remote sensing and envi-
ronmental monitoring, while those applying to short distance wireless channels
are, among others, in-cabin sensing, smart home, and human-computer inter-
action [21, 214, 215]. This confers different ISAC channel scenarios, which can
be summarized into three types (Fig. 15): monostatic, bistatic, and distributed,
depending on the deployment of the transmitter and receiver(s).

9.2.1 Sensing scenarios: monostatic, bistatic and distributed

ISAC scenarios are monostatic when sensing transmitter and receiver are at the
same position; bistatic case refers to sensing transmitter and receiver being sep-
arated, while distributed scenarios account for multiple sensing paths available
for the same target. In [216] a description of the monostatic, bistatic and dis-
tributed ISAC concepts, and the advantages of the centralized version of ISAC,
are discussed. Figure 15 summarises the three cases.

Figure 15: Monostatic, Bistatic and Distributed ISAC scenarios

For the monostatic case, many radar concepts apply, like the radar cross
section (RCS) to measure the radar reflectivity of individual targets. Monos-
tatic sensing channels can anyway be modeled from the multipath propagation,
limited to the case of having the transmitter and receiver at the same posi-
tion, so most of, but not all, the sensing energy coming from LoS components.
To that end, [217] provides an empirical scattering model obtained from mea-
surements of materials at 28 and 140 GHz. The implementation of monostatic
ISAC sensing requires the full-duplex mode of the radio interface, which is not
implemented so far in current 3GPP standards. This is the reason why some
proposed systems for ISAC refer in fact to a JSAC strategy, in which a radar
sensor is used to improve communication links.
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The estimation of the communications channel from the sensing one is inves-
tigated in [218], where the authors consider the communication receivers to be
the targets of a monostatic OTFS-based ISAC system. Thus, the two channels
in this case are highly correlated.In [219] the authors use OTFS modulation for
joint radar parameter estimation and communications, exploiting the channel
sparsity in the Delay-Doppler domain for efficiently separate sensing (radar)
parameters estimation and communications.

In the bistatic case, the transmitter sends communication and sensing signals
and the receiver captures the echoes from targets and clutter together with the
multipath (scattered) components that compose the communication channel.
As a consequence, any model that describes simultaneously the sensing and
the communications channels has to be geometrically accurate for simultaneous
multiple links, and reproduce moving targets along different tracks with spatial
consistency, including phase continuity [216].

9.2.2 Trends in ISAC channel modeling

The ISAC channel models are a combination of two channels in one single geom-
etry, i.e., a common framework that develops two approaches, either simulated
with more or less precision, or stochastically created. In [220], the ISAC channel
is defined as a two-port system in which sensing and communication channels,
as well as the common interference between them, are modeled as the reflec-
tivity and transmission functions of such system. This scheme is adaptable to
any current model in the literature, either deterministically created by precise
3D ray-tracing, stochastically from a random distribution of scatterers, targets,
and clutter, or a hybrid of the two.

Stochastic models Recent approaches on ISAC stochastic channel modeling
propose GSCM extensions to the 3GPP channel model [111], e.g., within COST
INTERACT [221] and elsewhere [222], [223]. The stochastic channel modeling
methods dominated the evaluation of wireless communications in 5G due to their
low computational complexity and easy standardization, which was sufficient to
evaluate the communication performance of 5G use cases. The application of
GSCM models to ISAC requires adding some important elements to the model,
since communication and sensing channels are somewhat different. For example,
[223] includes both stochastic and deterministic approaches while accounting
for spatial consistency. In [221], paths are generated by probabilistic functions
derived from channel measurements made in real scenarios, thus geometrically
pre-setting the distribution of effective scatterers, i.e., the objects on which the
set of rays is incident. The authors in [223] propose a shared cluster-based
stochastic JSAC channel model and conducts a channel measurement campaign
in typical LoS and NLoS indoor scenarios at 28 GHz and obtains the power
angular delay profiles (PADPs) of the communication and sensing channels.
For monostatic case, the correlation between the channels may exist, but this
is not so obvious correlation for bistatic and distributed cases, mainly because
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sensing “targets” and communication “scatterers” are not necessary the same
objects or, if they are, do not have the same reflectivity behaviour.

Deterministic models Current deterministic channel models have modeled
scatterers for communications and have considered the reflection from them
in the form of specular reflection or diffuse scattering. From radar/sensing
perspective, any target in the scene can be modeled according to its RCS, but for
ISAC, more detailed parameter are required, e.g., the bistatic target reflectivity
(BTR) [216]. An example of a target is a person on a bike (Fig. 15), a moving
target with local movements, causing in terms of sensing a long-term Doppler
because of its displacement, and micro-Doppler originated by the person and
wheels movements [216]. The same work further establishes that, for ISAC,
deterministic models with more physical descriptors are needed, especially for
target modeling, in contrast to the statistical approach of the GSCM models. To
resolve the issue, the authors propose a propagation channel model for ISAC that
is geometrically correct for multiple simultaneous sensor links and reproduce a
moving target in a spatially consistent way along a track, which includes phase
continuity.

Hybrid approaches Combining the stochastic and deterministic approaches
has the potential to benefit from efficiency of stochastic and realism of deter-
ministic approaches. In an ISAC context, the hybrid models would use a deter-
ministic method to identify primary signal propagation paths and a stochastic
method to generate additional objects and clusters. For example, 3GPP already
includes a hybrid channel model where RT is used to find propagation paths,
and stochastic clusters are generated afterward [111]. For ISAC, it is important
to incorporate the object’s RCS into the channel model for more realistic simu-
lation of scattered rays, which has significant implications for applications like
object recognition. Long-run simulations that maintain consistency in time and
space are required for an accurate evaluation of these applications. Therefore,
the GSCM needs to incorporate a spatial consistency model, as noted in [216],
to meet this requirement and avoid inconsistencies and artifacts in the Doppler
spectrum.

9.2.3 Characterizing ISAC channels: recent measurements and mod-
eling at mmWave bands

Recent ISAC channel measurements at 28 GHz frequency band are carried out
in Beijing Jiaotong University, China [224]. A measurement system is designed
as shown in Fig. 16(a), including Tx, sensing terminal (SX) and Rx. Tx and Rx
use a directional horn antenna and a 4x8 rectangular antenna array, respectively.
SX also uses a 4x8 rectangular antenna array and it is located close to TX to
measure sensing channel. The sounding signals have 1 GHz bandwidth and are
transmitted with a maximum power of 28 dBm.

Fig. 16(b) shows ISAC channel measurement scenario on campus, and dif-
ferent locations for RX are considered during the measurements. The novel
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Figure 16: ISAC channel measurement and modeling in [224, 222]. (a) Photos of
ISAC channel measurement systems; (b) ISAC channel measurement campaign;
(c) Mapping between communication channel and sensing channel; (d) CDF
comparisons of azimuth AS and DS of simulated and measured data.

idea of ISAC channel characterization and modeling in [222] is to distinguish
communication channel and sensing channel from propagation perspective and
characterize the both channels jointly in statistical modeling, which accurately
reflects the underlying correlation between communication channel and sensing
channel. According to mapping relation in environment, some communication
clusters are reserved in sensing channels, which are named evolving sensing
clusters. Besides, some newly generated clusters only exist in sensing channels,
which are named newborn sensing clusters. ISAC channels can be modeled
based on the distribution of those clusters. The ISAC channel parameters are
estimated using the SAGE algorithm and channel multipaths are clustered us-
ing the K-Power-Means algorithm [146]. Based on measurements, the first five
clusters with the maximum powers are mapping and matching to real physical
objects in environment as shown in Fig. 16(c). According to the mapping of real
physical objects, cluster transition probability from communication channels to
sensing channels is firstly defined in [222] and statistically modeled. The DS
and azimuth AS of simulated and measured ISAC channels are compared in
Fig. 16(d) that shows fairly good agreement. This validates that the proposed
ISAC channel model has fairly high accuracy.
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9.2.4 Open challenges in ISAC channel modeling

Channel modeling scenarios for ISAC include road and air traffic, logistics, crit-
ical infrastructure protection, among others. In such scenarios, ISAC channels
cannot be generalised as stationary in a wide sense. Then, models require dy-
namic scenarios to include moving passive objects, target track motion, pattern
interpolation or model-based data compression, and Doppler effects along the
track, as well as micro-Doppler, to consider local movements within the target.

ISAC targets cannot be modeled as communication scatterers, and require
a model adapted to sensing channels that includes bistatic delay and Doppler,
over the current RCS radar approach. Scatterers need 3D geometric modeling,
including dynamic state vectors of position and orientation. Correlation be-
tween sensing and communication channels in bistatic and distributed scenarios
has not been properly studied and modeled so far. On the other hand, mutual
interference between the ISAC channels may also be a limiting factor for ISAC
applications in some scenarios and system implementations. This knowledge
will be relevant for future applications in which the estimation of the commu-
nications channel from the sensing one may help saving signalling and radio
resources.

For standardisation purposes, it will be worth extending the 3GPP commu-
nication models to ISAC, either based on GSCM or hybrid approaches. Mea-
surements can help verifying if hybrid models preserve the spatial consistency
and may be useful for 6G system level evaluation.

9.3 Channel Measurements and Modeling for ultra large
arrays/MIMO

MIMO technology will continue to evolve for the 6G communication system.
It is expected that array with thousands of antenna elements (also refereed to
as ultra-large-scale antenna systems, gigantic MIMO or extremely large-scale
antenna systems) will be accommodated in 6G radios. Radio channel modeling
is essential for the system design, optimization and performance evaluation of
such ultra-large-scale antenna systems. In this section, state-of-art and key
challenges are briefly summarized for radio channel characterization of ultra-
large arrays, with a focus on channel sounder design, radio channel parameter
extraction and channel modeling.

Geometry based stochastic channel models, e.g. 3GPP 25.996 [225] and
3GPP 38.901 [111] are selected as standard channel models for 4G and 5G com-
munication systems, respectively. The UEs are small in size and far-from the
scatterers and BSs. Therefore, plane wave model and stationary channel are
typically adopted in the standard channel models. However, these assumptions
might be violated for ultra-large-scale MIMO systems. The large array aperture
would require a large far-field distance, which will be violated in practical de-
ployment scenarios. As a result, UEs might be located in the near-field region of
the BSs. Another effect introduced by the ultra-large-scale MIMO is the spatial
non-stationarity. It has been generally assumed in the standard channel models
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that the multipath components seen by the array elements are unchanged (i.e.
spatially stationary) across array elements. However, spatial non-stationary,
i.e. different channels can be observed by different array elements, might exist
as the array gets larger. Channel non-stationary properties have been consid-
ered in COST 2100 channel models, where the concept of visibility region was
proposed to model spatial non-stationarity over arrays. As for deterministic
channel modeling approach, it is favorable for characterizing site-specific sce-
narios. RT simulation can in principle well capture the channel characteristics
of ultra-massive MIMO systems, and it is a promising solution for such sys-
tems. However, it is computationally heavy to obtain the RT channels for all
the antenna elements within the large-scale array. The problem will become
much more pronounced for large-scale deployment scenario with many objects,
e.g. urban environments. Several alternative approaches have been discussed
to reduce the computation complexity, e.g. the database and ray interaction
simplification in the METIS model.

Reliable channel sounders are essential for obtaining high-fidelity channel
measurement data. As for ultra-massive MIMO antenna systems, the focus
has been on measuring channel spatial profiles, since the key task of extremely
large-scale antenna systems is to better exploit the spatial property of the radio
channels. Typical solutions for measuring channel spatial profile reported in the
literature include real antenna array (i.e. with parallel RF chains), switched an-
tenna array (i.e. with one RF chain connected to multi-antennas with a switch),
phased array, and virtual antenna array. There exists a trade-off between chan-
nel sounder capability and cost. Real antenna array based channel sounder
is capable of capturing real-time channel responses, enabling measurements in
highly dynamic scenarios. However, its cost and complexity is rather high, espe-
cially for ultra-massive antenna systems. Virtual array solution, which has been
widely employed already for large-scale antenna based channel sounding, on the
other hand, can easily achieve scalable antenna array configuration, making it
highly suitable for large-scale antenna based channel measurements. However,
it is limited to static scenario and it requires highly accurate positioning and
phase coherent measurement system.

Generic channel parameter estimator, which can accurately extract multi-
path parameters with high resolution, is highly desirable. Many channel pa-
rameter estimators have been reported in the literature. Plane wave assump-
tion is typically adopted to reduce the model complexity. However, this as-
sumption is challenged as the antenna array size gets larger and cell size gets
smaller. Narrowband is also assumed in many algorithms, to reduce complexity
in multi-domain parameter estimation. However, ultra-wideband system im-
plementation might be expected for the future radio systems, especially at the
mmWave and sub-THz frequency bands. Another key general assumption in
channel parameter estimation is the stationary channel for antenna array ele-
ments. This assumption is valid for small-scale arrays as well. However, as the
array dimension gets large, this assumption will be eventually violated. As a
result, elements across the large-scale array will experience multipath compo-
nents with different parameters. These observations for ultra-massive MIMO
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systems, if not properly considered, will eventually impact the channel param-
eter estimator performance. Oversimplification in the model will also introduce
model mismatch errors for the parameter estimation.

9.4 Application of ML and DL for Propagation Classifi-
cation, Clustering and Regression

An accurate wireless channel model is a necessity to support environment-aware
communications. Wireless channel characteristics are vital in stochastic channel
modeling (SCM), localization systems, and orthogonal frequency division multi-
plexing (OFDM) technology. They are also regarded as key indicators for quality
of communication[226]. Wireless channel characteristics can be extracted from
measurement data or simulation (such as RT). However, it is challenging to
conduct measurements. Simulation is time-consuming and expensive, especially
for complex environments in high-frequency band[227].

The recent surge of AI is revolutionizing almost every branch of science
and technology, including wireless channel modeling[228]. Many researchers are
trying to utilize DL models and ML algorithms to estimate or generate wireless
channel characteristics.

In the general framework of wireless systems and communications, ML/DL
can be leveraged to address three major problems:

• classification, e.g. for LoS/NLoS identification [150],[229]. Reliable and
fast detection of LoS can be helpful to assist beamforming techniques or to
deploy Fixed Wireless Access networks, as their effectiveness improves in
presence of visibility between the wireless devices. Moreover, LoS/NLoS
detection can be also beneficial in mobile channel modeling, as different
formulas can be effectively applied depending on whether LoS or NLoS
conditions occur.

• clustering, e.g. to identify and group multipath contributions with similar
features [191, 146]. Multipath clustering is crucial to limit the complexity
of channel modeling while catching the essence of the propagation process
at the same time.

• regression, i.e. to get the cause and effect relationship between some prop-
agation markers (like received signal strength, path loss, spread coefficients
of the channel, etc.) and some input features relevant to the propagation
process.

In [230], authors used linear models, artificial neural networks (ANN), and
k-nearest neighbor (KNN) to estimate the power of received radio signals in
urban areas. DL models are becoming increasingly popular due to their pow-
erful ability in non-linear approximation and massive data processing. [231]
introduced a deep CNN for radio map estimation. Besides channel charac-
teristics in the power domain, many researchers also focused on the temporal
domain channel characteristics such as DS [232][233]. Typically, for data (such
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Figure 17: The MTL DL model for channel characteristics SR in [227].

as images) processed by DL models, pixels of different channels are entirely in-
dependent. However, channel characteristics (in power, temporal, and angular
domain) are correlated because they originate from the same radio propagation
process. Therefore, multi-task learning (MTL) can be beneficial in generat-
ing multiple channel characteristics simultaneously. [227] introduced an MTL
DL model (Figure 17) for super-resolution (SR) of six kinds of channel char-
acteristics. High-resolution channel characteristics data can be recovered by
the proposed MTL DL model with low-resolution data as input. The authors
also evaluated other mainstream DL models. The results indicate that without
adjustment, popular DL models (such as ResNet, ViT and GAN) can not be
applied for SR of wireless channel characteristics.

Certainly, AI will play an increasingly more influential role in channel mod-
eling. Here we propose two suggestions for future research:

(1) Data is always regarded as the impetus of ML models. Measurement data
and data by simulation are two primary sources of training data for ML to
propagation. Novel channel measurement technologies should be studied
to reduce the measurement cost and improve the precision of measurement
data (such as denoising). Current simulation software should be modified
to cater mainstream data formats for popular DL computing frameworks
such as PyTorch and TensorFlow.

(2) Compared with typical image and voice datasets, the size of channel char-
acteristics data is relatively small. Lightweight DL models are recom-
mended because large DL models are inclined to overfit the small training
dataset. Another advantage of the lightweight DL model is that they are
easier to be computed in BSs without GPUs. Considering distributed
learning and federated learning, the communication cost can be reduced
due to fewer parameters being updated.
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9.5 Data-Driven Radio Channel Prediction - Extrapola-
tion in Frequency/Time-Space Domains and for Dif-
ferent Scenes and Systems

Channel prediction is to interpolate and extrapolate the channel responses or its
properties in frequency and/or spatial-temporal domains. Environment-aware
channel prediction also includes the prediction of channels in multiple scenar-
ios/environments. Channel predictions have conventionally been dominated by
model-driven approaches that reply on physics (e.g., utilizing the closed-form
translation and rotation of spherical waves expanded from the received field at
antennas [234]), mathematics (e.g., using Fourier transform to interpolate chan-
nel in frequency domain, using anomaly detection for blockage-aware channel
prediction [235]) and statistics (e.g., scenario-based stochastic channel mod-
els with parameterization). However, with the development of 6G, it is ex-
pected to map the physical and virtual worlds and expand the boundaries of
human-machine-things connectivity; thus it is expected that channel model-
ing/predictions could cover all spectra, different systems, and full applications
in various scenarios. Model-driven prediction approaches could be enhanced
with the support of the advanced data-driven methods to expand further the
predictable boundaries.

The data-driven methods, or in other words, the AI or the ML/DL methods,
are represented by deep neural networks and have been widely used in many
fields because of the excellent nonlinear modeling ability. AI-enabled channel
modeling/prediction as proposed in [15, 147, 236] is a disruptive technology,
which can well improve the intelligence and accuracy of radio propagation pre-
diction and simulation. Compared with the traditional methods, advantages of
AI-enabled channel modeling/prediction are as follows:

(1) Efficient massive data mining and processing ability: With the explosive
growth of available data due to the expansion of applicable bands and sce-
narios as well as system resolutions and capabilities, the acquisition, stor-
age and processing of massive data have brought significant challenges to
traditional channel modeling/prediction methods. Deep neural networks
are good at mining complex features in highly dimensional and highly
redundant data, and do not rely on additional manual feature screening.

(2) Strong modeling and adaptive ability: Deep neural network has good
performance in nonlinear system modeling. Since neural network can au-
tomatically extract input features and establish mapping, it has excellent
adaptability and generalization ability when input features change.

(3) Excellent learning and prediction ability: AI-driven channel model directly
learns features of data sets and extracts core factors that have impacts on
channels, therefore the predicted outputs can be more essentially derived
from the changes of the input features, thus improving accuracy of channel
prediction.
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Figure 18: Implementation examples of AI for channel modeling.

The AI based data-driven methods, good at establishing the relation be-
tween massive radio channel data and complex physical propagation environ-
ment [237, 238], and have many potential applicable domains in channel predic-
tion as shown in Fig. 18 and below.

(1) Scenario-to-Channel: Channel models based on AI take scenario features
as input and then output channel parameters. The expected model is
a group of trained networks by using massive channel and environment
data (e.g., 3D Lidar data and 2D image data [238, 236]). The trained
deep neural network is expected to well establish the mapping relationship
from scenario to channel (e.g., path loss, major cluster), and the goal is
to predict radio frequency channel parameters from other modalities of
image or/and point clouds.

(2) Channel-to-Channel: Typical application of AI enabled channel-to-channel
mapping is data enhancement and frequency migration including both
interpolation and extrapolation. Neural networks can be used to learn
limited channel data and quickly generate massive data with similar prop-
agation characteristic; it is valuable for the applications requiring massive
channel data, e.g., in over-the-air wireless device testing chambers [239].
Furthermore, AI models can learn frequency impacts on different chan-
nels and predict the channel for unknown frequencies. A typical case is to
use uplink channels to predict downlink channels in Frequency Division
Duplex systems.

(3) Scenario-to-Scenario: Mapping from physical environment to electromag-
netic virtual environment is a potential field, and it’s essentially to re-
construct environment from the perspective of radio wave propagation.
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Scenario-to-scenario mapping aims to construct a scenario model of point
cloud or scatterer space using massive data such as satellite images. The
reconstructed scenario model contains rich electromagnetic environment
information, and it can not only serve to predict channels but also to
realize electromagnetic environment perception.

In addition to the above-mentioned deep learning based data-driven chan-
nel modeling/predictions, there are also other complexity/computation less-
intensive methods that can be explored to be used for channel prediction.
For instance, the evolutionary algorithms (EA) or generic algorithms (GA)
[240, 241, 242]. Inspired by biological evolution, the EA algorithms encode
candidate solutions using chromosomes and provides a fitness function deter-
mining their qualities; over iterations, crossover and mutation are performed to
generate new chromosomes and selection is effectuated to preserve good chro-
mosomes. EA or GA could perform channel prediction with the assistance of
RT tools for fitness function and reach near-optimal solutions/predictions.

Most above mentioned methods predict channel in spatial-temporal (envi-
ronment and mobility) and frequency domains. To expand the boundaries for
future applications, the channel prediction needs to be performed across differ-
ent systems as well. As such, the data-driven algorithms need to be trained
by using data captured in different domains and systems (e.g., radar monos-
tatic backscatterd channel data and communication signal bistatic channel data,
[243, 244]). Training with data captured by different systems could make the
trained AI-based algorithm robust to different system setups and non-linearities,
and the goal is to obtain the domain and system invariant channel prediction
algorithm.

9.6 Hardware-in-the-Loop Radio Channel Emulation

The 3GPP generally defines many standard channel models for wireless commu-
nication system simulation and evaluation. However, theoretical channel model
cannot be directly used for hardware system and terminal simulation/evaluation
such as air interface testing. Radio channel emulator can act as a representation
of the real-world radio channel, and it enables creation of mathematical channel
models representing physical radio signal transmission [245, 246]. It is still chal-
lenging for channel emulation in complex environments such as high-mobility
scenario, massive MIMO scenario, etc.

Wireless channel emulator uses a down-converter to transform RF signal
to baseband, and then uses high-speed digital signal processors such as FPGA
to achieve digital filtering of baseband signals based on channel models, gen-
erating a signal that incorporates channel effects. Finally, RF output of the
signal is achieved through an up-converter. Therefore, channel emulator can
achieve equivalent substitution for field measurements in laboratory, spanning
various stages of wireless communication research, core equipment development,
network planning optimization, and network operation. Many researches have
been conducted by COST INTERACT to improve channel emulation.
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Figure 19: Hardware-in-the-loop emulation system structure for high-mobility
communication.

        Simulation, 300km/h

        Measurement, 300km/h

Figure 20: Example plots of instantaneous downlink throughput.

In order to further improve channel emulation especially for high-mobility
scenario, a novel hardware-in-the-loop channel emulator is firstly developed by
Beijing Jiaotong University so that real-world high-mobility radio environment
can be accurately modeled and physically implemented [247, 248, 249], and the
architecture is shown in Fig. 19. The emulation system uses two BSs and one
core network, and each BS is configured as downlink 2×2 MIMO space division
multiplexing mode. In order to evaluate network performance, a QoS test server
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        Simulation, 300km/h

        Measurement, 300km/h
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Figure 21: Example plots of downlink throughput distribution.

and test terminal are set up on core network side and mobile terminal side, re-
spectively. In order to verify accuracy of the emulation system in high-mobility
scenario, we use test instrument and network consistent with high-mobility field
test to evaluate RSRP, SINR, downlink throughput by the hardware-in-the-loop
channel emulator, and compare with field test results. Here, we consider high-
speed railway scenario with 300 km/h moving speed. A large body of wide-
band channel measurements at 450 MHz, 900 MHz, 2.1 GHz bands are con-
ducted along “Beijing-Shanghai”, “Beijing-Tianjin”, and “Beijing-Shenyang”
high-speed railway lines, and measurement-based channel models are developed
for high-mobility channel emulation [250, 251]. The instantaneous downlink
throughput values and CDF curve through hardware-in-the-loop emulation and
onboard measurements are compared in Fig. 20 and Fig. 21. It is found that
the simulated downlink throughput by using the hardware-in-the-loop channel
emulator is consistent with measurements and prediction error is less than 10%
[250].

Currently, channel emulation, especially in high-mobility scenarios, mainly
faces the following challenges: i) Conducting measurements in high-mobility
scenario is difficult, lacking joint validation with application-level transmission
performance; ii) Most channel emulators adopt an instrument-based architec-
ture, which has limited computational and storage capabilities. This limitation
hinders the generation of large-scale channel coefficient matrices in high-mobility
scenario; iii) Effective emulation time is short, dynamic emulation capabilities
are limited, frequency range and bandwidth are restricted, and there is also a
lack of emulation capabilities for super-large-scale antenna arrays.
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9.7 Channel sensing using advanced antenna concepts for
mmWave and beyond

mmWave and (sub-)THz bands open unprecedented opportunities for environment-
aware communications. The available spectrum in these frequency ranges en-
ables ultra-high data rates and high-accuracy sensing applications, which are
needed for the use cases considered in 6G [2, 22]. At such frequencies, highly
directional beams are used to mitigate large free-space attenuation, which in
turns enables better exploitation of spatial resources. Sensing the channel in its
angular dimension is therefore of utmost importance but becomes challenging
as carrier frequency gets higher.

Channel characterization that performs directional measurements in mmWave
and (sub-)THz bands typically uses rotating horn antennas to benefit from an-
tenna gain and thus increases measurement dynamic (see [252, 253] for indoor
scenario and [254] for outdoor scenario). However, steering narrower antenna
beams across azimuth and elevation at both transmitter and receiver leads to
prohibitive measurement duration. To decrease it, the study in [255], conducted
within the COST INTERACT action, implements a measurement based ray-
launcher to estimate the double-directional path data from single-directional
radio channel sounding. Other channel sounders use antenna arrays to avoid
any mechanical displacement and characterize the channel faster. This includes
classical phased arrays [256] or switched arrays [257] and lens-based arrays [258]
to decrease cost and hardware complexity.

While these approaches are suitable for channel characterization, their high
cost and complexity limit their applicability for sensing in actual communica-
tions such as for beam alignment and handover in mobile scenario or estimating
CSI for RIS. These use cases require fast and energy efficient techniques to
discover the angular properties of the channel.

An alternative approach is to use a dedicated peculiar antenna that esti-
mates directions of arrival (DoA) with a single radio frequency chain. This
results in a non-expensive system with real-time sensing capabilities. Such
solutions leverage the frequency diversity that inherently exists in the radia-
tion pattern of some classes of radiating structures. Those devices are purely
passive and exhibit therefore low complexity and easy calibration procedure.
Cavity-backed metasurfaces [259], lens-loaded cavities [260], or leaky-wave an-
tennas (LWA) [261, 262] exhibit such properties, with the latter being a lower
profile solution. LWAs also exhibit a tractable beam scanning behavior with
frequency [263] which enables using standard DoA estimation techniques such
as monopulse-based [264] or MUSIC algorithm [265]. While LWAs represent
a cost-effective solution to estimate DoA at mmWave and (sub-)THz frequen-
cies, they typically need to operate over a large frequency bandwidth in order
to scan a large field of view (FoV), which makes them unpractical for most
communication standards.

This issue has been tackled in the literature with different approaches. At
mmWave, the LWA scanning velocity has been improved by loading the leaky
guiding structure with a dense metasurface [266] or by adding an extra disper-
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sive lens [267]. However, the required bandwidth to scan a large FoV remains
larger than typical frequency channels used in telecommunications. The works
in [268, 269] exploit several multiport LWAs while [270] uses reconfigurable
LWAs. These approaches achieves AoA estimation over a large FoV at the
expense of cost and/or complexity.

Recently, it was proposed in [265] to exploit LWAs able to radiate multiple
beams at each frequency. This multibeam operation is achieved by increasing
the period of the spatial modulation of periodic LWAs. This generates multiple
fast spatial harmonics, each one contributing to a beam in the far-field radi-
ation. In doing so, the FoV, at each frequency, is divided by the number of
beams, which in turns greatly reduces the bandwidth required for a single beam
to scan its angular sub-region. [265] shows that a subspace-based algorithm such
as MUSIC can distinguish the DoAs of incoming sources among the multiple
beams. Two proofs of concept have been developed within COST INTERACT
in the 28 GHz band: an E-plane scanning single-port LWA [261] which needs a
2-GHz-bandwidth to scan the whole FoV (i.e., 7.4% fractional bandwidth) and
an H-plane scanning dual-port LWA [262] requiring only 1-GHz-bandwidth to
scan the whole FoV (i.e., 3.7% fractional bandwidth). The former was designed
in a substrate-integrated waveguide technology while the latter is a fully metal-
lic structure, which does not suffer from dielectric losses and therefore increases
radiation efficiency. The H-plane scanning dual-port LWA is based on a cor-
rugated waveguide modulated by rectangular slots. Its geometry is shown in
Fig. 22 along with its radiation pattern. Up two five beams at each frequency
can be observed whose directions steer with frequency. The MUSIC pseudo
spectrum in Fig. 23 shows that the three DoAs considered in this example are
well retrieved with no ambiguity among the multiple beams.

Currently, channel sensing using such advanced antennas concepts still faces
some challenges. First, angular estimation based on frequency diversity is prone
to frequency fading for spatially non-resolvable multipath components. Conse-
quently, techniques are to be investigated to improve channel sensing robustness.
Second, sensing in both elevation and azimuth planes is yet to be done. There-
fore, 2D scanning with a single LWA is also an exciting perspective of research,
which could lead to cost-effective solution for sensing in future mobile genera-
tions. Finally, future works should be carried out to make use of such advanced
antennas in beam management to ultimately extend the time-frequency 2D re-
source grid used so far in 5G to a space-time-frequency 3D grid, enabling a
seamless exploitation of the beam space.
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10 Conclusions and future outlook

by Vittorio Degli Esposti

The purpose of this paper is to summarize the key challenges in the field
of radio channel measurement and modeling that need to be addressed to sup-
port the development of next generation (6G) wireless networks. Additionally,
it aims at providing an overview of the main research activities undertaken by
the scientific community, particularly within COST CA20120 ”INTERACT”,
in order to achieve those goals. Next generation wireless networks will have to
deal with a variety of environments and applications, with frequencies ranging
from sub-6 GHz to THz, from sparse to ultra-dense networks, ultra-high perfor-
mance links, and including sensing, imaging, and smart-environment applica-
tions. Therefore, a number of new studies are required to address relevant issues
such as material and propagation characteristics at the new frequency bands,
more sophisticated channel sounding techniques and novel modeling method-
ologies, including the use of machine learning techniques.

Section 4 introduces the study of propagation mechanisms and parameters
that’s fundamental for the definition of channel measurement and modeling
techniques. Making use of proper measurement setups, several experimental
studies are addressing the analysis of basic propagation mechanisms, such as the
increased wall-penetration loss with frequency and blockage loss from humans
and objects. Furthermore, several studies address measurement and modeling
of diffuse scattering from surfaces and due to material variability, with a focus
on polarization characteristics and the enforcement of reciprocity in directional
scattering models. The recent advent of RIS has spurred research on the effect
of such surfaces on propagation, with particular emphasis on the comparison
between electromagnetic simulation and simplified scattering models, the power-
decay trend of reflection from such surfaces and the development of macroscopic
modeling approaches.

Other studies are addressing higher-level propagation characteristics, such as
fading correlation over space and frequency. Some reports show evidence that
power spectrum shapes do not change noticeably across different frequencies,
while there is indication from comparative channel sounding that the channel
becomes more “sparse” at higher frequencies, at least up to sub-THz frequencies,
with a lower degree of multipath richness.

An important research activity within the COST INTERACT community is
focused on channel sounding at both sub-6 GHz frequencies and above. Chan-
nel sounding techniques are described in Section 5 while channel measurement
results are summarized in Section 6.

Measurement campaigns in sub-6 GHz bands have been conducted to char-
acterize wireless propagation, with particular focus on vehicular scenarios. Re-
searchers are now exploring slightly higher frequency ranges, such as those in
the so-called mid-band, or FR3 range (7-24 GHz) that is under the spotlight
to overcome spectrum congestion and support massive MIMO systems. Differ-
ent techniques and array configurations were employed to estimate multipath
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components and study non-stationarity among antenna elements.
Several other studies have addressed propagation and channel sounding tech-

niques at mmWave and sub-THz frequencies. To compensate for the higher
path-loss, high-gain antenna systems are needed, making spatial channel char-
acteristics crucial for system design and this fact is reflected in channel sounding
techniques. Since reliable massive-MIMO channel sounders are still unavailable
at these frequencies, several studies resort to virtual array techniques, which
require a great deal of measurement time. One crucial issue is therefore the
reduction of measurement time. Another important activity within COST IN-
TERACT is the collection of channel measurements into a unitary database
that should also include detailed information on the measurement environment
and technique and can be used for channel modeling and simulation purposes,
as described in Section 6.4.

On the channel modeling side, a great deal of activity is being carried out,
with a focus on Geometrical Stochastic Channel Models (GSCM), map-based
models, Machine Learning (ML) based approaches, and advanced ray tracing
techniques, as described in Section 7. GSCM models are widely used for simu-
lation of wireless systems, considering scatterers in the environment and mod-
eling signal propagation through multiple paths. Various works have proposed
GSCM models for different use cases such as vehicular and rail communica-
tions. Map-based models use simplified maps of the environment to capture
spatial consistency among different links. ML-based approaches have gained at-
tention for wireless channel characterization, where ML algorithms can improve
the accuracy of propagation models or provide a black-box representation of
the channel, albeit with the drawback of a time-consuming and critical training
phase. Tabular data is well-suited for ensemble models like Random Forests and
gradient boosting decision tree models, while space-related, unstructured data
(e.g., images) can be effectively processed using deep learning models such as
convolutional neural networks and appear quite attractive for propagation mod-
eling, given its intrinsic spatial characteristics. Ray tracing can be used as a
low-cost alternative to measurements for the training phase. At the same time,
advanced ray tracing techniques including parallelization techniques, dynamic
ray tracing techniques and ray-based techniques for reducing the computational
burden for ultra-large arrays and reconfigurable intelligent surfaces are also be-
ing developed. A range of relevant techniques that are used for parameter
estimation and clustering algorithms are covered in Section 8, where it is shown
there is a strong research ongoing on both the “classical” and learning-based
techniques.

Finally, a look into new technologies in the field of channel measurement
and modeling is given in Section 9. Among the novel channel modeling tech-
niques that are being addressed, we can mention anticipative channel predic-
tion for dynamic scenarios based on Artificial Intelligence (AI) techniques. AI-
based methods have applications in scenario-to-channel prediction, channel-to-
channel mapping for data enhancement and frequency migration, and scenario-
to-scenario mapping to reconstruct the electromagnetic environment. Hardware-
in-the-loop channel emulators are also being developed to accurately model
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and physically implement real-world high-mobility radio environments. Finally,
novel leaky-wave antennas are being proposed for channel sensing and direc-
tional channel measurements without the use of rotating directive antennas or
arrays.

All considered, thanks to the foreseen new frequency bands, application
scenarios and technology developments, we can conclude that research on radio
channel characterization and modeling is as active as ever.
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zuela, “Suburban residential building penetration loss at 28 ghz for fixed
wireless access,” IEEE Wireless Communications Letters, vol. 7, no. 6,
pp. 890–893, 2018.

[46] U. T. Virk and K. Haneda, “Modeling human blockage at 5g millimeter-
wave frequencies,” IEEE Transactions on Antennas and Propagation,
vol. 68, no. 3, pp. 2256–2266, 2019.
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[65] M. Döbereiner, M. Käske, A. Schwind, C. Andrich, M. A. Hein, R. S.
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[171] C. Ling, X. Yin, R. Müller, S. Häfner, D. Dupleich, C. Schneider, J. Luo,
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