

Barcelona, Spain, 23-25 May 2023

SUBJECT | Annexes of the 5th Management Committee Meeting of COST Action CA20120 "The Intelligence-Enabling Radio Communications for Seamless Inclusive Interactions (INTERACT)"

List of Annexes

Annex 1 – List of persons entitled for reimbursement

Annex 2 - List of TDs

Annex 3 – TDs Schedule

Annex 4 – Attendance lists

Annex 5 – WG Chairs Reports and Liaisons

Annex 6 – Action Chair's Plenary slides

Country	Name	Surname
Lithuania	Rimvydas	Aleksiejūnas
Spain	Carles	Anton-Haro
LOS	Carles	Anton-Haro
Turkey	Hüseyin	ARSLAN
Serbia	Dragana	Bajić
Romania	Vasile	Bota
Ireland	Conor	Brennan
Italy	Chiara	Buratti
UK	Alister	Burr
SUBSTITUTE		Cavallero
Poland	Krzysztof	Cichoń
France	Laurent Clavier	Clavier
Portugal	Luis M	Correia
SUBSTITUTE		Cwalina
Poland	Agnieszka	Czapiewska
Germany	Andreas	Czylwik
Belgium	Margot	Deruyck
Germany	Diego	Dupleich
Denmark	Wei	Fan
France	Davy	Gaillot
Spain	Ana	Garcia Armada
Austria	Golsa	Ghiaasi
fYR Macedon		Hristov
Cyprus	Konstantinos	Katzis
Poland	Pawel	Kulakowski
Norway	Per Hjalmar	Lehne
Croatia	Adriana	Lipovac
SUBSTITUTE	Roman	Marsalek
SUBSTITUTE	Yang	Miao
Finland	Konstantin	Mikhaylov
SUBSTITUTE	Tomi	Mlinar
Spain	Jose-Maria	Molina-Garcia-Pardo
Austria	Raheeb	Muzaffar
Belgium	Claude	Oestges
SUBSTITUTE	: Flor	Ortiz
Montenegro	Milica	Pejanovic-Djurisic
UK	Sana	Salous
Italy	Flaminia	Saratti
Italy	Marco	Skocaj
Germany	Carsten	Smeenk
Czech Rep	Jan	Sykora
SUBSTITUTE	:Valentina	Timcenko
Portugal	Fernando José	VELEZ
France	Guillaume Villemaud	Villemaud
Switzerland	Jean Frederic	Wagen
Austria	Thomas	Wilding
Netherland	Haibin	Zhang

	TD Number	TD Author	TD Title	TD Abstract	TD WG	TD Data	Nome	Cognome	Email	Acronimo
		Reiner S. Thom ^{**} a, Carsten Andrich, Saw James Myint, Christian	Characterization of Multi-Link	Integrated sensing and communication (ISAC) qualifies mobile radio systems for detecting and localizing of passive objects by means of radar sensing. Advanced ISAC networks rely on meshed mobile radio access nodes (infrastructure and/or user equipment, resp.) establishing a distributed, multistatic MIMO radar system in which each target reveals itself by its bistatic backscattering. Therefore, characterization of the bistatic reflectivity of targets along their trajectories of movement is of highest importance for ISAC performance prediction. We summarize several challenges in bistatic modeling and measurement of extended, potentially time-variant radar targets. We emphasize the specific challenges arising for distributed (hence multi-link)						
		Schneider, Gerd	Propagation and Bistatic Target	ISAC networks and compare to the state of the art in propagation						
Υ	TD(23)05001	Sommerkorn	Reflectivity for Distributed ISAC	modeling for mobile communication.	Sub-WG2	2023-04-05 13:51:59	Reiner	Thomä	reiner.tho	TUIL
Υ	TD(23)05002		Blockage Effects of Road Bridge on mmWave Channels for Intelligent Autonomous Vehicles	Vehicular communication and sensing technologies are key to enabling 6G Intelligent Autonomous Transportation Systems (IATS). With the introduction of massive sensors and artificial intelligence (AI) fusion applications, IATS is needed to support data transmission rates up to 10 Gb/s. Millimeter-wave (mmWave) technology has attracted extensive attention owing to abundant spectrum resources, which can support the timely transmission of massive data. However, performance degradation of mmWave due to signal blockage has become one of the critical technical challenges. Road bridges as one of the common obstacles in urban scenarios, which has severe blockage effects on communication links. Therefore, this paper comprehensively studies the impact of road bridge blockage effects on mmWave vehicle-to-infrastructure (V2I) links and proposes an empirical model that can accurately characterize the bridge blockage effect. First, we use a self-developed mmWave channel sounder to carry out channel measurements on typical urban roads. Measurement results indicate that a maximum extra propagation loss of up to 23 dB is caused by road bridges. In addition, to address the deficiencies of existing propagation prediction models, the Single Road Bridge (SRB) model is proposed in this work. This model reveals for the first time the extra propagation loss caused by the road bridge to the channel. Compared with existing models, the SRB model can make the mean absolute error (MAE) and root mean square error (RMSE) within 5 dB. The proposed SRB model is of great value for accurately simulating real-world road bridge blockage events when designing future IATS.	WG1,Sub- WG1.1,VT2	2023-04-11 14:56:33	Ke	Guan	kguan@bj	BJTU
		Andres Navarro, Leonardo	5G Optimization Model Formal	MiniZinc is an Open Source tool designed to model constraint satisfaction and optimization models in a high level, solver independent way. In this work, we propose a traditional optimization model for 4G/5G networks using a combination between a constraint based optimization and Lineal Integer Programming, combined with a planning tool that serves as the coverage cost function and some initial idea of Digital Twin. The main objective is to show the use of MiniZinc as modelling tool, independent of the solver and discuss the use of different solvers and an optimization model using						

	1	1	T		ı	1				
				During the gait analysis using depth cameras, a filtering process is applied						
				before procesing the signals, in order to reduce noise, fill null data and						
				improve the gait parameters extraction. Such filtering process may alter the						
				signal in a non desirable way and we consider important to verify if the						
				processing we are using is adequate. It means that reduces enough noise						
				without altering the esential parameters of the signal. For such task, we use						
				two algorithms and compare both, in order to decide which one is the most						
				reliable for the gait variables extraction with high confidence. In this paper,						
				we compare both methods (interpolation and mean average) using a Pearson						
			Filtering Techniques Comparison	correlation and continuous concordance test between the captured signals						
		Nicolas Salazar, Juan Gallo	in Gait Analysis using Depth	before filtering and after filtering for each filter type. We found that both						
Υ	TD(23)05004	and Andres Navarro	Cameras	filtering methods produce similar results and are reliable.	VT1	2023-04-12 02:22:43	Andres	Navarro	anavarro@10	CESI
				A wireless channel emulator (WCE) with a deterministic channel model has						
				been recently developed for virtual drive testing the communication system						
				in the site-specific scenario. Asserting the performance of communication						
				links in a higher layer typically utilizes the standard channel model, and thus						
				may not be applicable in predicting the site-specific fading characteristic.						
				WCE requirement in real-time processing also introduces a challenge for						
				performance evaluation with a non-standard deterministic channel via						
				numerical computation. To address this issue, the parameter mapping						
				technique is introduced to map the site-specific fading characteristic into the						
				Rician fading channel model. Relationship between the site-specific fading						
				parameters and the Rician's power delay profile and Doppler power						
			Non-stationary Site-Specific to	spectrum are analytically derived for the parameter mapping scheme in a						
			Standard Channel Parameter	narrowband and wideband channel. The simulation was conducted to						
		Nopphon Keerativoranan,	Mapping for Performance	comparatively evaluate the capability of the mapped Rician fading channel in						
		Kentaro Saito, Jun-ichi	Evaluation of Wireless Channel	producing the site-specific fading statistic in terms of time correlation and						
Υ	TD(23)05005	Takada	Emulator	frequency correlation functions.	WG1	2023-04-18 08:00:26	Nopphon	Keerativoranan	nopphon.kT	ITECH
				In this paper, the measurements of the channel impulse response at						
				mmWave band in office and conference rooms are described. The central						
		MA Bussidesselve C. I	Channel Institute Bases	frequency is 27 GHz with a bandwidth of 400 MHz. The description of the						
		M. Drozdowska, S. J.	Channel Impulse Response	used measurement stand and considered environments are presented. The						
		Ambroziak, K. K. Cwalina, P. Rajchowski, and N.	Measurements at mmWave Band in Office and Conference	initial analysis of the power delay profile, mean delay, and RMS delay spread						
V	TD/22\0500C			allow preliminary conclusions to be drawn that there is a significant impact	WC1	2022 04 10 12 25 12	Manika	Drondowska	m dranda a l	IDV/
Y	TD(23)05006	Cardona	Rooms	of the dimensions of the rooms on these parameters.	WG1	2023-04-18 13:25:13	INIOUIKG	Drozdowska	mdrozdo@U	JPV

Fourth-generation mobile networks are successively replaced by fifth generation (5G) New Radio networks based on the 3rd Generation Partnership Project (3GPP) standard. This standard is dedicated to civilian users, and the conducted analytical work shows that it has numerous technological gaps that prevent its direct implementation in military communication systems. From the military operation viewpoint, jamming of civil and military systems is one of the essential elements of electronic warfare. This paper focuses on a practical trial of low-energy effective jamming on 5G private network. The proposed method is based on jamming the 5G signal pilots. It characterizes by high energy efficiency and prevents establishing a connection between the user equipment and 5G base station (gNB). Energy savings allow the jammer to work longer and be implemented on a small unmanned serial vehicle (UAV), which prevents uplink connection when placed near the gNB. On the other hand, the generation of low-power jamming signals in the gNB vicinity makes detecting the jammer by enemy effective Jamming on 5G Private entropic reconsistance systems challenging. The proposed solution is compared with the test results for other types of jamming WG2 2023-04-18 14:10:14 Piotr Rajchowski	piorajch@ PG	
	piorajch@ PG	
vehicle-to-everything (V2X) communication systems is extension of employed frequency bands from sub-6 GHz to millimeter wave (mmWave) range. To investigate different propagation effects between sub-6 GHz and mmWave bands in high-mobility scenarios, one needs to conduct channel measurements in both frequency bands. Using a suitable testbed setup to compare these two bands in a fair manner, we perform channel measurements at center frequencies of 2.55 GHz and 25.5 GHz, velocities of 50 km/h and 100 km/h, and at 126 different spatial positions. Furthermore, we conduct a comparative study of the multi-band propagation based on measurement results. We estimate the power delay profile (PDP) and the herbert Groll, Thomas Zemen, Stefan Schwarz, Christoph F. GHz and mmWave High Speed Wireless channels at the two employed frequency bands in terms of root- mean-square (RMS) delay spread and RMS Doppler spread. WG1 2023-04-19 13:16:11 Faruk Pasic	faruk.pasiq TU WIE	/IEN_
Parisis GALLOS, Rance DeLONG, Nicholas MATRAGKAS, Allan BLANCHARD, Chokri MRAIDHA, Gregory EPIPHANIOU, Carsten MAPLE, Konstantinos KATZIS, Jaime DELGADO, Silvia LLORENTE, Pedro MALO, Bruno ALMEIDA, Andreas MENYCHTAS, Christos PANAGOPOULOS, Ilias MAGLOGIANNIS, Petros PAPACHRISTOU, Mariana MAGLOGIANNIS, Petros PAPACHRISTOU, Mariana MASURAGAS, Allan The MedSecurance project, is an EU funded project focusing on identifying new challenges in cyber security with focus on hardware and software medical devices in the context of emerging healthcare architectures. In addition, the project will review best practice and identify gaps in the guidance, particularly the guidance stipulated by the medical device regulation and directives. Finally, the project will develop comprehensive methodology and tooling for the engineering of trustworthy networks of inter-operating medical devices, that shall have security-for-safety by design, with a strategy for device certification and certifiable dynamic network composition, ensuring that patient safety is safeguarded from malicious cyber actors and technology "accidents". This work is co-funded by the HORIZON.2.1 - Health Programme of the European Commission, Grant Agreement number: 101095448 - Advanced Security-for-safety Assurance for Medical Device lot (MEDSECURANCE). VT1 2023-04-19 13:49:42 Konstantinos Katzis	k.katzis@e EUC	

		1			1			1	I I	,
				Massive multiple-input multiple-output (MIMO) precoders are typically						
				designed by minimizing the transmit power subject to a quality-of-service						
				(QoS) constraint. However, current sustainability goals incentivize more						
				energy-efficient solutions and thus it is of paramount importance to						
				minimize the consumed power directly. Minimizing the consumed power of						
				the power amplifier (PA), one of the most consuming components, gives rise						
				to a convex, non-differentiable optimization problem, which has been solved						
				in the past using conventional convex solvers. Additionally, this problem can						
				be solved using a proximal gradient descent (PGD) algorithm, which suffers						
				from slow convergence. In this work, in order to overcome the slow						
				convergence, a deep unfolded version of the algorithm is proposed, which						
				can achieve close-to-optimal solutions in only 20 iterations as compared to						
		Thomas Feys, Xavier		the 3500 plus iterations needed by the PGD algorithm. Results indicate that						
		Mestre, Emanuele	Deep Unfolding for Fast Linear	the deep unfolding algorithm is three orders of magnitude faster than a						
		Peschiera, François	Massive MIMO Precoders under	conventional convex solver and four orders of magnitude faster than the						
Υ	TD(23)05010	Rottenberg	a PA Consumption Model	PGD.	WG2	2023-04-20 13:54:08	Emanuele	Peschiera	emanuele.	KU LEUVEN
				This TD presents wideband measurement and simulations ranging from 1 to						
				30 GHz in a parking lot, considering the absence and presence of vehicles.						
				Measurements have been carried out considering a transmitter in an						
		J.M. Molina-Garcia-Pardo,		elevated position, with omni antenna. Receivers have been spread in the						
		L. Rubio-Arjona, M. T.		parking using omni antennas also. Furthermore, the scenario has been						
		Martinez-Ingles, A. Mateo-		simulated by means of OPAL open-source ray launching tool. CI, FI and ABC						
		Aroca, E. Egea-Lopez,	Wireless Channel	models have been considered, showing a consistent value of n withing						
		'	Characterization from 1 to 28	frequency. The presence of cars does not affect much one path loss along all				l		
Υ	TD(23)05011	and Juan Reig	GHz in an outdoor parking-lot	frequencies.	WG1.1	2023-04-20 14:35:15	Jose-Maria	Molina-Garcia-Pardo	josemaria.	UPCT
				Wireless vehicular communication will increase the safety of road users. The						
				reliability of vehicular communication links is of high importance as links with						
				low reliability may diminish the advantage of having situational traffic						
				information. The goal of our investigation is to obtain a reliable coverage						
				area for non-stationary vehicular scenarios. Therefore we propose a deep						
				neural network (DNN) for predicting the expected frame error rate (FER). The						
				DNN is trained in a supervised fashion, where a time-limited sequence of						
				channel frequency responses has been labeled with its corresponding FER						
				values assuming an underlying wireless communication system, i.e. IEEE						
				802.11p. For generating the training dataset we use a geometry-based						
				stochastic channel model (GSCM). We obtain the ground truth FER by						
				emulating the time-varying frequency responses using a hardware-in-the-						
				loop setup. Our GSCM provides the propagation path parameters which we						
				use to fix the statistics of the fading process at one point in space for an						
				arbitrary amount of time, enabling accurate FER estimation. Using this						
				dataset we achieve an accuracy of 85 % of the DNN. We use the trained						
				model to predict the FER for measured time-varying channel transfer						
		Anja Dakić, Benjamin	Frame Error Rate Prediction for	functions obtained during a measurement campaign. We compare the						
		Rainer, Markus Hofer,	Non-Stationary Wireless	predicted output of the DNN to the measured FER on the road and obtain a		1				
Υ	TD(23)05012	Thomas Zemen	Vehicular Communication Links	prediction accuracy of 78 %.	WG1,VT2	2023-04-21 07:21:08	Anja	Dakic	anja.dakic	AIT

	1				1			1		
				Electromagnetic field exposure (EMF) has grown to be a critical concern as a						
				consequence of the ongoing installation of fifth-generation cellular networks						
				(5G). The lack of measurements makes it difficult to accurately assess the						
				electromagnetic field exposure in a specific urban area. Exposure map						
				reconstruction techniques construct these maps from a set of measurements	:					
				recorded by spatially distributed sensors. However, the spatial sampling rate						
				is low. To overcome this issue, the exposure map estimation is addressed as						
				an image inpainting/missing data imputation task. In this work, we use a						
				convolutional neural tangent kernel (CNTK) for a fully connected and						
				convolutional neural network in order to perform a matrix completion and						
				estimate EMF exposure from a few sensor-measured values located in an						
				urban environment. Experimental results show that the kernel adapts to the						
				propagation characteristics of the electromagnetic field from the sensor data						
		Mohammed Mallik,	EME-CNTK: A fast method to	producing accurate estimates. It is a promising solution for exposure map						
		Esteban Egea-Lopez, Joe	reconstruct urban	reconstruction, which does not require training sets. The proposed method is	5					
		Wiart, Davy P. Gaillot,	Electromagnetic Field Exposure	compared with other machine learning approaches based on U-net and						
Υ	TD(23)05014	Laurent Clavier	by Matrix Completion	conditional generative adversarial networks, namely EME-Net and EME-GAN.	Sub-VT1	2023-04-21 12:03:28	Mohammed	Mallik	mohamme (CNRS
				In order to predict the potential future development of instantaneous						
				exposure considering the increased utilisation of 5G base stations at 3.6 GHz,						
				long-term measurements have been performed using the selective radiation						
				meter SRM-3006 at two base stations. Possible future utilisation scenarios						
				have been simulated at three locations in the cell using a 5G-capable user						
				equipment. The utilisation due to those usage scenarios indicates that the						
				majority of currently feasible usage scenarios require only a minimal amount						
				of data, resulting in a minimal increase in instantaneous exposure. However,						
				generating high data rates, e.g. using Netflix services, results in a full						
				utilisation of the site for a brief period of time. As the demand for such						
				services will increase in the future, this will lead to a prolonged state of full						
				site utilisation. If a Massive MIMO system is fully utilized by an active user						
				requesting high data rates, the instantaneous exposure decreases						
				significantly with increasing distance of the user to the measurement point.						
				In terms of predicting future changes in instantaneous exposure, it can be						
			Future exposure development	concluded that upcoming applications will result in an increase in exposure						
		Anna-Malin Schiffarth,	with 5G massive-MIMO due to	for users, but this increase is expected to be lower with the use of massive-	WG1,Sub-					
Υ	TD(23)05015	Jörg Pamp, Dirk Heberling	higher network utilisation	MIMO antennas compared to the use of passive antennas.	VT1	2023-04-21 12:21:46	Anna-Malin	Schiffarth	schiffarth@F	RWTH

	1	1	T	T	1	T	ı	T	т т
				Cub Tayahayta (sub Tila) (i.e. 100 200 Cila) communication					
				Sub-Terahertz (sub-THz) (i.e., 100-300 GHz) communication					
				is envisaged as one of the key building blocks for future communication systems due to its vast unexploited					
				,					
				bandwidth. Knowledge of the radio channel characteristics is					
				key to the design and development of new radio systems and air					
				interfaces. Reliable channel sounding is essential to build accurate					
				and realistic channel models. Virtual antenna array (VAA) has					
				been a popular channel sounding strategy to obtain accurate					
				directional characterization due to its low-cost and simple system					
				implementation. However, this concept has not yet been realized for sub-THz bands in the state-of-the-art works due to difficulty					
				in accurate phase control. The measurement range has been					
				rather limited at sub-THz due to significant signal loss, especially					
				in the radio frequency (RF) cables, compared to microwave or					
				millimeter-wave frequencies. In this paper, we focus on vector					
				network analyzer (VNA)-based channel sounders, highlighting					
				frequency extension with sub-THz frequency extenders, measurement					
				range extension with radio-over-fiber (RoF) schemes,					
				and angular resolution improvement by VAA implementation					
				with phase-compensation scheme. These techniques enable and					
		Voiian Lyu, 7higiang Vuan	Enabling Long Pango Largo Scalo	enhance sub-THz channel characterization. The performance					
		Mengting Li, Allan	Channel Sounding at Sub-THz	of the proposed long-range phase-compensated sounder is also					
		Wainaina Mbugua, Pekka	Bands: Virtual Array and Radio-	experimentally demonstrated by the VAA-based channel measurements	WG1,Sub-				
Υ	TD(23)05016	Ky"osti, and Wei Fan	Over-Fiber Concepts	at 100 GHz in an indoor scenario.	WG1,3ub-	2023-04-24 08:40:14	Woi	Fan	wfa@es.aa AAU
	10(23)03010	ky osti, and werran	Over-riber concepts	The reconfigurable intelligent surface (RIS), which	WG1.1	2023-04-24 08.40.14	VVEI	I dii	Wia@es.adAAO
				can reconfigure the radio propagation environment to a favorable					
				state based on programmable metamaterial, is seen as a promising					
				technology for 6G to improve wireless system performance.					
				The RIS design should be cost-effective and it typically consists					
				of a large number of RIS elements. RIS diagnosis, i.e. to					
				identify the faulty RIS elements, is essential to ensure the RIS					
				radiation charateristics. In this letter, a low-cost, robust, generic,					
				fast, yet highly effective over-the-air (OTA) diagonsis method					
				based on complex signal measurements is proposed to detect the					
				faulty phase shifters in the passive RIS. The proposed algorithm					
				only requires phase inversion operation (i.e. 00 and 1800 phase					
			Over-the-Air Diagnosis of	states) for each RIS element, which is fast and supported by					
		Yifa Li, Fengchun Zhang,	Reconfigurable Intelligent	1-bit RIS. The algorithm is experimentally validated using a					
		Kim Olesen, Zhinong Ying,	9	, ,	WG1,Sub-				
Υ	TD(23)05017	and Wei Fan		demonstrating its effectiveness and robustness in practical setups.	WG1.2	2023-04-24 08:41:03	Wei	Fan	wfa@es.aa AAU
Υ	TD(23)05017	and Wei Fan	Measurements	demonstrating its effectiveness and robustness in practical setups.	WG1.2	2023-04-24 08:41:03	Wei	Fan	wfa@es.aa AAU

			I		1	1				
				(mmWave) frequencies is				'	1 1	
				envisioned as a key technology for beyond 5G communication. Accurate					i l	
				channel modeling is essential					i l	
				for the design and evaluation of such systems. Ray-Tracing (RT) is employed					i l	
				for accurately simulating					i l	
				propagation channels. However, state-of-the-art RT for multi-antenna					i l	
				systems typically uses plane-wave				'	1 1	
				extension under far-field conditions, which cannot capture Near-Field (NF)					i l	
				and Spatial non-Stationary				'	1 1	
				(SnS) properties observed in measurements on real-world, mmWave massive				'	1 1	
				MIMO systems. This				'	1 1	
				work aims at massive MIMO RT simulations in an accurate and efficient					i l	
				manner. First, we employ the				'	1 1	
									i l	
				brute-force strategy to simulate channels for each array element to				'	1 1	
				accurately capture the NF and SnS				'	1 1	
				channel properties and provide a baseline to evaluate other methods.				'	1 1	
				Second, a novel coarse-refinement				'	1 1	
				strategy is proposed. The channel is simulated using RT on a few sparsely				'	1 1	
				located array elements and				'	i	
				then interpolated onto other elements using spherical/astigmatic-wave				'	1 1	
				approximations and the Uniform				'	1 1	
			Efficient Ray-tracing Simulation	Theory of Diffraction, thus significantly reducing simulation complexity while				'	1 1	
		Zhiqiang Yuan, Jianhua	for Near-field Spatial Non-	maintaining accuracy.				'	1 1	
		Zhang, Vittorio Degli-	stationary mmWave Massive	The proposed strategy is demonstrated to offer almost the same simulation				'	1 1	
		Esposti, Yuxiang Zhang,	MIMO Channel and Its	accuracy as the brute-force	WG1,Sub-			'	1 1	
Υ	TD(23)05018	and Wei Fan	Experimental Validation	method, with a dramatic reduction in simulation complexity through	WG1.1	2023-04-24 08:43:36	Wei	Fan	wfa@es.aa	AAU
								'	i	
								'	i	
				Ultra-wideband (UWB) indoor positioning systems have the potential to				'	1 1	
				achieve sub-decimeter-level accuracy. However,				'	i	
				the ranging performance degrades significantly under Non-Line-of-Sight				'	i	
				(NLoS) conditions. Detection and mitigation of NLoS conditions is a complex				'	1 1	
				problem, and has been the subject of many works over the past decades.				'	1 1	
				When localizing pedestrians, human body shadowing (HBS) is a particular				1	1	
				and specific cause of NLoS. In this paper, we present an HBS mitigation					1 1	l
				strategy based on the orientation of the body and tag relative to the UWB				1	1	
				anchors. Our HBS mitigation strategy involves a robust range error model,					1 1	l
				interacting with a tracking algorithm. The model consists of a bank of				1	1 1	
				Gaussian Mixture Models (GMMs), from which an appropriate GMM is				1	1 1	
				selected based on the relative body-tag-anchor orientation. The relative				1	1 1	
				orientation is estimated by means of an Inertial Measurement Unit (IMU)				1	1 1	
				attached to the tag, and a candidate position provided by the tracking				1	1 1	
				algorithm. The selected GMM is used as likelihood function for the tracking				1	1 1	
				algorithm to improve localization accuracy. Our proposed approach is				1	1 1	
				realized for two tracking algorithms. We validate the implemented				1	1 1	
		Cedric De Cock, Emmeric	Robust IMU-based Mitigation of	algorithms on dynamic UWB Two Way Ranging measurements, performed in					1	
		Tanghe, Wout Joseph,	Human Body Shadowing in UWB	an industrial lab environment. The proposed algorithms outperform other					ı I	l
				an made and comment the proposed digonalins outperform other						
Υ	TD(23)05019	David Plets	Indoor Positioning	state-of-the art algorithms, achieving a 39 % reduction of the p75 error.	WG2	2023-04-24 10:26:27	David	Plets	david.plets	UGENT

						1	-			
				communications have enabled smooth, timely and location independent						
				communication and exchange of information between vehicles and other						
				vehicular communication elements, such as position and speed of the						
				vehicle, traffic information, alarms, etc. This advanced concept is known as						
				the vehicle-to-everything (V2X) communication, and it encompasses						
				techniques for safe and efficient operation of cooperative intelligent						
				transportation system (ITS) applications. It enables real-time wireless						
				communication between vehicles to vehicles (V2V), vehicles and						
				infrastructure (V2I), and vehicles and pedestrians (V2P), paving the way						
				towards full driving automation and advanced driver-assisted systems. There						
				are numerous V2X-enabled services already implemented, covering mostly						
				scenarios that rely on the need for efficient, real-time and secure traffic						
				management (e.g., smart roads, smart cities). The V2X communication highly						
				relies on wireless environment characteristics, which are vulnerable to						
				unlawful interception, eavesdropping, hacking and a range of other cyber						
				security issues. In this context, vehicles have to react in real time to changes						
				in the driving environment, by exploiting complete environmental awareness						
				obtained through secure V2X communication, with low latency, high						
				reliability and high accuracy. This research is related to the analysis of the						
				security and privacy concerns of the V2X scenarios, focusing on the diversity						
				of the vulnerabilities, attacks, and the means for the network traffic attack						
		Valentina Timčenko,		detection and identification. It is based on the use of the 5G-LENA and NR						
		Sandra Lagén Morancho,								
				V2X modules of the ns-3 discrete-event network simulator, openly available						
		Biljana Bojović, Katerina	Attack identification and	to the research community, for the exploration of V2X attack case studies	MC2 VT2					
Υ	TD(23)05020	Koutlia, Slavica Boštjančič	classification in V2X scenarios	scenarios.	WG3,VT2, VT4	2023-04-24 15:37:18	Valentina	Timcenko	valentina.t l	DLIDINI
· ·	10(23)03020	Nakas, Caries Anton Haro	Classification in VZA scenarios	This research provides the most relevant results from the STSM realized in	V14	2023-04-24 13.37.16	valentina	ППСЕПКО	valentina.u	PUPIN
				Orthogonal frequency division multiplexing (OFDM) is widely used and works						
				efficiently for the communication, but emerging applications requires OFDM						
				, , , , , , , , , , , , , , , , , , , ,						
				to be flexible to meet sensing requirements. The time-frequency waveform						
				design of OFDM for dual-functional radar-communications (DFRC) is critical						
				to achieve the future communication and sensing requirements. Therefore,						
				we propose a novel method to minimize Cram'er-Rao bounds (CRBs) of the						
				delay and Doppler estimation to improve radar performance of an OFDM						
				DFRC system. Although some methods are proposed in the literature to						
				improve the CRBs, these methods either require feedforward signaling or						
				subcarrier reservation. However, it is possible to exploit the constellation						
				extension of quadrature amplitude modulation (QAM) to achieve lower CRBs						
				without these requirements. Therefore, the proposed method provides a						
				transparent communication along with the CRB minimization for						
				conventional OFDM systems. For the evaluation of the proposed method,						
			Waveform Design with	CRB and symbol error rate (SER) are considered in the simulation results.						
		Ebubekir Memisoglu,	Constellation Extension for	Furthermore, the theoretical SER analysis of the proposed method is derived						
	TD(23)05022	Talha Yılmaz, Huseyin Arslan	OFDM Dual-Functional Radar- Communications	to understand the effects of CRB minimization on the communication performance.	WG1,WG2, Sub-WG2	2023-04-25 07:48:59		ARSLAN	arslan.usf()	

				I	1		l			
				Most wireless communication technologies for Internet of Things (IoT)						
				applications face the bottleneck of dense and large-scale use cases. One						
				solution to this problem is a periodic channel reservation strategy, in which						
				only a small group of stations can compete for channel access during a given						
				period. The IEEE 802.11ah standard, a.k.a. Wi-Fi HaLow, deploys this idea in						
				its channel access protocol, named Restricted Access Window (RAW). A						
				single RAW consists of one or more RAW slots during which only designated						
				, , , ,						
				stations can contend for channel access. This paper considers an IEEE						
				802.11ah-based network with randomly distributed stations around the						
				Access Point (AP), operating under a Rayleigh-fading channel with capture						
				enabled. We develop an analytical model to evaluate the contention of a						
				group of stations and propose a Load-Aware Channel Allocation (LACA)						
				algorithm for the RAW slot period. The LACA algorithm ensures the delivery						
				of all packets that designated stations carry, allowing for the allocation of						
				load-aware RAW slots, which is effective in enhancing the Age of Information						
				(AoI). Extensive simulations are used to validate our analytical results. We						
		Hamid Taramit, Luis		then evaluate the Packet Delivery Ratio (PDR) and channel usage within a pre-	1					
		Orozco Barbosa,		allocated RAW slot to prove the effectiveness of our proposal. We further						
		Abdelkrim Haqiq, José	Load-Aware Channel Allocation	study the impact of the spatial distribution of the stations around the AP and						
		Jaime Camacho Escoto,	for Rayleigh Fading Wi-Fi HaLow	the capture effect under a Rayleigh channel on the performance of the						
Υ	TD(23)05023	Javier Gomez	Networks	proposed LACA algorithm.	WG3,VT4	2023-04-25 10:13:15	Hamid	Taramit	hamid.tara l	JCLM
				In this paper, we present the implementation of a system that identifies the						
				modulation						
				of complex radio signals. This is realized using an artificial intelligence model						
				developed, trained,						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals.						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing						
				developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing systems. The results obtained						
		Florin Radu, Petru A.		developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing systems. The results obtained show that for certain modulation types, the identification is performed with						
		Cotfas, Marian Alexandru,		developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing systems. The results obtained show that for certain modulation types, the identification is performed with a high degree of success.						
		Cotfas, Marian Alexandru, Titus C. Bălan, Vlad		developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing systems. The results obtained show that for certain modulation types, the identification is performed with a high degree of success. The use of a cloud-based platform allows quick access to the system. The						
	TD(23)05025	Cotfas, Marian Alexandru,	Signals Intelligence System with Software-Defined Radio	developed, trained, and integrated with Microsoft Azure cloud. We consider that cloud-based platforms offer enough flexibility and processing power to use them instead of conventional computers for signal processing based on artificial intelligence. We tested the implementation using a software-defined radio platform developed in GNU Radio that generates and receives real modulated signals. This process ensures that the solution proposed is viable to be used in real signal processing systems. The results obtained show that for certain modulation types, the identification is performed with a high degree of success.	WG3	2023-04-26 04:46:59		Alexandru	marian.ale 1	

				I	Γ			<u> </u>	T		
					Describe wells intelligent surfaces (DICs) will also a local state at a little						
ı					Reconfigurable intelligent surfaces (RISs) will play a key role to establish millimeter wave (mmWave) ultra-reliable low-latency communication						
ı					l ' '						
ı					systems for sixth-generation (6G) applications. Currently, there are a few						
					working prototypes of						
					RISs operating in the mmWave frequency band and all of them are based on						
ı					passive reflective elements. However, to fabricate an efficiently working RIS						
ı					at mmWave frequencies, it is crucial to take care of the strong signal						
ı					attenuation, reflective element losses and undesired radio frequency (RF)						
ı					circuit effects. In this paper, we provide measurement campaign results for						
ı					an active RIS in the mmWave frequency band as well as its analysis and						
					system design. The obtained results demonstrate that an active RIS						
					outperforms a RIS working in passive mode and provides a higher signal-to-						
					noise-ratio (SNR). The active RIS consists of active reflective elements that						
ı					amplify the impinging signal and reflect the signal to the desired beam						
					direction. To obtain an efficient RIS in terms of power consumption and RIS						
					state switch time, we design a hexagonal RIS with 37 elements working at 26						
					GHz. These elements are designed to work whether in passive state (binary						
					phase shifting) or in active state (switch OFF or amplifying). We provide a comparison between the performance of a RIS working in passive and active						
			Hamed Radpour, Markus		mode using numerical simulations and empirical measurements. This						
			Hofer, Lukas Walter	Active Reconfigurable Intelligent	comparison reveals that the active reflective intelligent surface (RIS) provides						
			1	Surfaces for the Millimeter-	a received power that is at least 4 dB higher than that of the equivalent	Sub-					
			Martin Schiefer and	Wave Frequency Band: System	passive RIS. These results demonstrate the strong advantage of using active	WG1.1,Sub-					
	Y	TD(23)05026	Thomas Zemen	Design and Measurement	RISs for future ultra-reliable low-latency wireless communications.	,	2023-04-26 15:56:13	Hamod	Radpour	hamed.rag	ΛIT
\vdash		10(23)03020	momas zemen	Design and Weasarement	initias for future ditra reliable low fatericy wheleas communications.	WGI.Z	2023-04-20 13.30.13	nameu	Raupoui	nameu.rau	AII
					 Splitting code (SpC) is defined on a finite ring Zp, where p = 2^m-1 and m is a						
					binary size of ring elements. It is based on a process from discrete algebra						
					called splitting: if S and E are subsets of an Abelian group G, and if every						
					nonzero element g∈ G can be uniquely represented in the form s·ɛ, where						
					$\epsilon \in E$ and $\epsilon \in S$, then E is a multiplier set that splits G with splitting set S, with a						
					trivial case S=G and E={1}. In SpC code, the multiplier set comprises integer						
					weights of errors that can be corrected within a single code symbol, while						
					the splitting set splits the code word into sub-words. The code is scalable, but						
					also offers telescopic properties: its shortening enables increased error						
					correction without altering the coding and error-correcting procedures. The						
					purpose of the paper is to investigate the level of increase depending on the						
					type of modulo. Modulo can be p - a Mersenne prime and c - a composite						
ı					Mersenne number if m is a prime but c is not. In both cases Zp\{0} (or						
					Zc\{0}) = E · S) according to Fermat's little theorem (denotes						
					cardinality). If m is a non-prime integer, modulo n is an ordinary Mersenne						
				On telescopic scaling of splitting	number, yielding SpC codes that require more truncation to achieve						
	Υ	TD(23)05027	Dragana Bajic	codes	increased correction capability.	WG2	2023-04-26 22:43:52	Dragana	Bajić	dragana.ba	UNS
								·			
					This paper introduces initial measurements for Extremely large antenna						
					array (ELAA) channel at 10 GHz in two indoor environments: meeting room						
					and classroom. A single-input multiple-output (SIMO) configuration was						
					adopted with a virtual ELAA formed by positioning an antenna along						
				Indoor Channel Measurements	specified grids on the Rx side. The paper summarizes environments where						
			Wenfei Yang, Ziming Yu,	at 10 GHz with Extremely Large	the measurements were conducted, the setup of the equipment, and initial						
	Υ	TD(23)05028	Mate Boban, Jian Li	Antenna Arrays	results on observed channel spectral characteristics.	WG1	2023-04-28 07:41:45	Mate	Boban	mate.boba	HUAWEI

				We present our new scalable multi-channel and multi-node sounder, the						
				ILMSoundG3. It is configurable in terms						
				of the number of switched Tx and parallel Rx nodes. The basic structures of						
				the Tx and Rx nodes are given with consideration of the measurement						
				system requirements. The ILMSoundG3 is validated via a proof of concept						
				measurement						
				at 2.53 GHz in an urban environment. The system was configured as a						
				sounder with two Tx nodes and one Rx node,						
				which records two MIMO links simultaneously. Each node uses an antenna						
				array. The transmitters were moved by cars whereas the receiver was						
		Daniel Stanko, Michael		elevated 20 m above the ground by a lifting platform acting as a base station.						
		Döbereiner, Gerd		The used system configuration results in a snapshot rate of approx. 0.5 kHz,						
		Sommerkorn, Daniel		which covers the expected time variance of the chosen environment. The						
		Czaniera, Carsten Andrich,		·						
		· '	1	measurement results were analyzed using HRPE, providing a parametric						
		Christian Schneider,	Time a Manierat Direction of Market	description of the specular propagation paths of the radio channel per						
		Sebastian Semper,	Time Variant Directional Multi-	measurement link. Each estimated path is described by its directions of						
		Alexander Ihlow, Markus	Link Channel Sounding and	departure and arrival, delay, Doppler shift, and fully polarimetric complex	WG1,Sub-					
Υ	TD(23)05029	Landmann	Estimation for V2X	path weights.	WG2	2023-04-28 09:13:09	Gerd	Sommerkorn	som@tu-il	TUIL
				The Rician K-factor is a measure of small-scale variations of the received						
				signal in fading channels. In this work, the K-factor is estimated in a typical						
				office environment based on channel measurements carried out in						
				millimeter-wave (mmWave) frequencies, covering the 25-40 GHz spectrum,						
				in both Line-Of-Sight (LOS) and obstructed-LOS (OLOS). The classical moment-						
		Rubio, Lorenzo; Rodrigo-		based method has been used as an estimator of the K-factor applied over						
		Peñarrocha, Vicent		wideband measurement snapshots, comparing the values with those						
		Miquel; Reig, Juan;		extracted from the Power Delay Profile (PDP) in a small local area around the						
		Fernández, Herman;	Analysis of the Rician K-factor of	receiver position. These results are particularized to the potential 26, 28, 33						
		Pérez, Jesús Ramón;	a typical millimeter-wave office	and 38 GHz frequency bands for the design and deployment of the future	WG1,Sub-					
Υ	TD(23)05030	Torres, Rafael; Valle, Luis	scenario	wireless communications in mmWave frequencies.	WG1.1	2023-04-28 10:36:47	Juan	Reig	jreigp@dc	UPV
				Analysis and modeling of wireless communication systems are dependent on						
				, , , , , , , , , , , , , , , , , , , ,						
				the validity of the wide-sense stationarity uncorrelated scattering (WSSUS)						
				assumption. However, in high-mobility scenarios, the WSSUS assumption is						
				approximately fulfilled just over a short time period. This paper focuses on						
				the stationarity evaluation of high-mobility						
				multi-band channels. We evaluate the stationarity time, the time over which						
				WSSUS is fulfilled approximately. The investigation is performed over real,						
				measured high-mobility channels for two frequency bands, 2.55 and 25.5						
				GHz. Furthermore, we demonstrate the influence of user velocity on the						I
		Davilla Badavila Famil		stationarity time. We show that the stationarity time decreases with						I
		Danilo Radovic, Faruk		increased relative velocity between the transmitter and the receiver.						I
		Pasic, Markus Hofer,	Charles and the French and the action of the t	Furthermore, we show the						I
		i .	Stationarity Evaluation of High-	similarity of the stationarity regions between sub-6 GHz and mmWave	WC1 6 1					I
v	TD/22\05024	Mecklenbräucker, and	mobility sub-6 GHz and	channels. Finally, we demonstrate that the	WG1,Sub-	2022 04 20 42-25 45	Dil-	D- d- d-		TI I M/IENI
Υ	TD(23)05031	Thomas Zemen	mmWave non-WSSUS Channels	sub-6 GHz channels are characterized by longer stationarity time.	WG1.1	2023-04-28 13:36:16	Danilo	Radovic	danilo.rade	IU WIEN

		ı	T	T	1		ı			
		Saúl A. Torrico and Roger	Space Correlation Function in a 2D-Trunk Dominated Forest – Exact Solution vs. High Frequency Approximation	With the emergence of 5G wireless communications networks to be deployed in forested areas, there is the need to assess and improve the communication of these systems. One way of improving it is by using MIMO (Multiple Input Multiple Output) antennas to maximize the capacity of the system; the improvements therefore should not come just by meeting the required loss between the transmitter and the receiver, but should come from the possibility of using space diversity antennas at the receiver site. From this point of view, it is important to understand the space correlation function of the propagation channel. The objective of this presentation is to compare the exact solution with the high frequency approximation solution of a stochastic radiowave propagation model useful for assessing the effects of a 2D-trunk dominated forest on the space correlation function of a 5G						
Υ	TD(23)05032	H. Lang	Solution	communication system at the high frequency bands.	WG1	2023-04-29 17:06:43	Saul	Torrico	storrico@g	COMSEARCH
	. , , , , , , , , , , , , , , , , , , ,	Marco Skocaj, Pedro Enrique Iturria Rivera,	Uplink Scheduling in Federated Learning: an Importance-Aware Approach via Graph	Federated Learning (FL) has emerged as a promising framework for distributed training of AI-based services, applications, and network procedures in 6G. One of the major challenges affecting the performance and efficiency of 6G wireless FL systems is the massive scheduling of user devices over resource-constrained channels. In this work, we argue that the uplink scheduling of FL client devices is a problem with a rich relational structure. To address this challenge, we propose a novel, energy-efficient, and importance-aware metric for client scheduling in FL applications by leveraging Unsupervised Graph Representation Learning (UGRL). Our proposed approach introduces a relational inductive bias in the scheduling process and does not require the collection of training feedback information from client devices, unlike state-of-the-art importance-aware mechanisms. We evaluate our proposed solution against baseline scheduling algorithms based on recently proposed metrics in the literature. Results show that, when considering scenarios of nodes exhibiting spatial relations, our approach can achieve an average gain of up to 10\% in model accuracy and up to 17 times in energy efficiency compared to state-of-the-art importance-						
Υ	TD(23)05033	Erol-Kantarci	Representation Learning	aware policies.	WG3	2023-04-30 14:47:46	Marco	Skocaj	marco.sko	UNIBO
V	TD/22/07024	Amar Al-Jazri and Sana Salous	Measurements and path loss	Frequencies in the sub THz bands are envisaged for future wireless communications. This requires propagation models to predict coverage. The wideband channel sounder at Durham University was recently upgraded to cover the frequency bands 110 to 170 GHz and 235 to 300 GHz. Measurements in typical environments were conducted at 145 GHz and path loss parameters estimated. The TD will present results of Measurements in subtloop.	WG1	2022 05 04 07/52/40	Cons	Calaus		DUDUAM
Y	TD(23)05034	Thomas Wilding, Benjamin J. B. Deutschmann, Christian	Propagation Modeling for Physically Large Arrays: Measurements and Multipath	outdoor LoS and NLoS scenarios. This paper deals with propagation and channel modeling for physically large arrays. The focus lies on acquiring a spatially consistent model, which is essential, especially for positioning and sensing applications. Ultra-wideband, synthetic array measurement data have been acquired with large positioning devices to support this research. We present a modified multipath channel model that accounts for a varying visibility of multipath components along a large array. Based on a geometric model of the measurement environment, we analyze the visibility of specular components. We show that, depending on the size of the reflecting surface, geometric visibility and amplitude estimates obtained with a super-resolution channel estimation algorithm show a strong correspondence. Furthermore, we highlight the capabilities of	WG1,Sub-	2023-05-01 07:53:48	Sana	Salous	sana.salou	DURHAM
Υ	TD(23)05036	Tufvesson, Klaus Witrisal	Component Visibility	the developed synthetic array measurement system.	2	2023-05-02 07:12:35	Thomas	Wilding	thomas.wi	TUGRAZ

				_						
		Ana Valenzuela-Pérez David Pérez-Díaz-de-Cerio		According to the European Road Safety Observatory, annual cyclist fatalities account for 2035 in 2019 (41% in rural areas), and the number of serious injuries is more than 30000. Innovative automotive systems and road solutions have been proposed to address many safety and emergency issues. These solutions usually include the introduction of sensors and wireless network communications, based majority on 5G, and lately 6G, or 802.11p technologies. However, mobile communication systems coverage in rural areas outside sparsely populated population centers is deficient. This causes many stretches, some very extensive, of rural and mountain roads to have no type of connectivity, which can create problems in terms of communication, navigation, and accessing emergency services. This paper proposes the use of Bluetooth technology to solve the lack of connectivity, implementing a real						
		Silvia Ruiz Boqué Mario	A BLE Mesh Based Testbed	testbed and analyzing some key indicators as the coverage radio, packet						
Υ	TD(23)05037	García-Lozano	System for Cyclists Safety	, , , , , , , , , , , , , , , , , , , ,	WG3,VT2	2023-05-02 09:26:20	Silvia	Ruiz Boqué	silvia.ruiz@	UPC
		Javier Otero Martínez,	Liquid Antenna Channel	Reconfigurable antennas are expected to play an important role in present and future communication systems. Following that trend, liquid antennas are able to change their topology in order to match different specifications and requirements. Unfortunately, it turns out that fewer details in hardware may imply that our current channel models cannot be applied successfully in this context. In particular, spatial correlation is key to understanding how this						
Υ	TD(23)05038	Ana García Armada	Modelling: Spatial Correlation	reconfiguration can be achieved and its strengths and limitations.	WG1	2023-05-03 09:09:48	Javier	Otero Martinez	jotero@tso	UC3M
		Eric Pierre Simon, Pierre Laly, Joumana Farah, Emmeric Tanghe, Wout	Measurement of the V2I Channel in Cell-free Vehicular Networks with the Distributed	In this TD, we present a small, yet realistic, vehicular cell-free massive MIMO (multiple-input multiple-output) architecture deployed at the University of Lille in a typical suburban environment under both Line-of-Sight (LOS) and obstructed LOS (OLOS) shadowing conditions. The radio channels were acquired with a distributed RF-over-Fiber (RoF) upgrade of the real-time channel sounder MaMIMOSA. The system operates at 5.89 GHz with an 80 MHz bandwidth, which corresponds to the ITS frequency band offered by the ITS-G5 and CV2X technologies. Four omnidirectional receive antennas were placed on the roof of a van moving at a speed of 25 km/h. The propagation channel was measured for various transmit antenna configurations, ranging from co-located antennas to fully distributed antennas. The measurement results show a significant gain in the signal-to-noise ratio (SNR) as well as a more uniform coverage and smaller delay spread values with the distributed scenarios compared to the centralized ones. Finally, the path loss measurement results obtained for the cell-free network provide deployment						
Υ	TD(23)05039	Joseph, Davy Paul Gaillot	MaMIMOSA Channel Sounder	guidelines for the distributed antennas.	WG1,VT2	2023-05-03 10:14:59	Davy	Gaillot	davy.gaillo	UNIVLILLE
		Mamadou NGOM - Laurent CLAVIER -	Reliability control in IoT networks with a mixture of exponentials as interference	In a context of low latency and high density of connected objects, ensuring global system coordination is not realistic. Under these conditions, the interference can vary significantly from one packet to another. We propose a method to choose a robust communication scheme in this type of environment. For this purpose, we model the interference by a mixture of exponentials. To ensure the reliability of the estimation of the mixture parameters, we use a bootstrap method. This allows us to choose the parameters of the transmission in order to ensure a probability of success on						
Υ	TD(23)05040	Malcolm EGAN	model	the transmitted packets.	WG2	2023-05-03 10:21:23	Mamadou	NGOM	grandngon	MT

		ı	ı			I		1		
				A system loss model for body-to-body networks in indoor and outdoor environments is proposed in this paper, based on measurements taken at 2.45 GHz. The influence of the type of environment, antenna visibility and						
				user mobility on model parameters has been investigated. A significant						
				impact of mutual antennas' placement and their visibility is shown. The						
		Sławomir J. Ambroziak,		proposed model fits well to empirical data, with the average root mean						
		Krzysztof K. Cwalina,		square error being 2.1 dB and the coefficient of determination being above						
		Manuel M. Ferreira, Filipe	System Loss Model for Body-to-	0.6 in the majority of cases. For designing purposes in generalised cases, it is						
		D. Cardoso, Luis M.	Body Networks in Indoor and	recommended that the system loss exponent is set to 1.5, and the system						
Υ	TD(23)05041	Correia	Outdoor Environments	loss at the reference distance is equal to 55.9 dB.	VT1	2023-05-03 10:44:21	Krzysztof	Cwalina	kkcwalina(PG
				Integrated Sensing and Communication (ISAC) has emerged as a key						
				technology in future cellular networks as it allows the integration of radar						
				sensing capabilities into mobile networks by sharing the same spectral and						
				hardware resources. This paper discusses the integration of radar sensing						
				capabilities into 5G Vehicle-to-Everything (V2X) sidelink communication to						
				enable an ISAC-capable 5G-V2X system that requires high-precision radar						
				sensing and highly reliable communication among vehicles and road						
				infrastructure. To meet these requirements in a high-density environment						
				where target objects are moving in close proximity to one another, a radio						
				resource allocation algorithm, based on the sensing-based semi-persistent						
				scheduling (SB-SPS) scheme, has been proposed that allocates additional						
				available time and frequency (bandwidth) resources to the transmitting						
				vehicle for high-resolution radar sensing. Further, to reduce the channel						
				occupancy generated by the transmitting vehicle by occupying the additional						
				resources to perform radar sensing tasks, the approach reserves only the						
				communication resources for future transmissions. The proposed approach is	1					
		Consideration Chair		evaluated through a set of performance metrics of both radar sensing and						
		Syed Najaf Haider Shah, David Martín-Sacristán.		communication including the probability of detection, root mean squared error (RMSE) of range and velocity estimation of target objects under line-of-						
		Carlos Ravelo, Carsten	Radar-Enabled Resource	sight (LOS) conditions, and packet reception ratio. The simulation results						
		Smeenk, Christian	Allocation in 5G-V2X Sidelink	demonstrate that the proposed approach allows each vehicle to perform						
Υ	TD(23)05042	Schneider, Joerg Robert	Communication	radar sensing while maintaining good communication performance.	Sub-WG2	2023-05-03 11:21:27	Sved Naiaf Haider	Shah	sved-najaf	TIIII
<u> </u>	15(23)03042	Schneider, Joerg Robert	Communication	radar sensing write maintaining good communication performance.	Jub WGZ	2023 03 03 11:21:27	Sycu Najai Haidei	Shan	Sycu Hajar	TOIL
				In this paper, we compare measured pathloss results from two indoor						
				scenarios at 143 GHz with a simplified link budget to visualize the feasibility						
				of high throughput wireless communication at these high frequencies. The						
				paper concludes that the high-throughput communication can be achieved in						
				indoor open areas, even if the Tx and Rx is not in LOS, but the increased						
				penetration loss at these high frequencies together with a limited link budget	:					
				make coverage though even thin indoor walls difficult and hence coverage						
		Christina Larsson, Bengt-	Feasibility of High Throughput	predictions without floorplans difficult. The high penetration losses must also						
		Erik Olsson, Henrik	Wireless Communication Above	be considered if indoor stochastic propagation models above 100 GHz should						
Υ	TD(23)05043	Asplund	100 GHz in Indoor Scenarios	be developed.	WG1	2023-05-03 11:31:58	Christina	Larsson	christina.c.	ERICSSON

			T							
Υ	TD(23)05044	Lianet Méndez-Monsanto Suárez, Kun Chen-Hu, M. Julia Fernández-Getino García, Ana García Armada	Orthogonal Time Frequency Space with Superimposed Pilots for Integrated Sensing and Communications	Emerging fifth generation (5G) and beyond technologies promise to operate in non-trivial high mobility conditions, such as in vehicle-to-vehicle communications scenarios or high-speed rail. In addition, the increasing demand for capacity and bandwidth leads to the use of higher frequencies. Under these conditions, the current orthogonal frequency-division multiplexing (OFDM) waveform has severe limitations. This motivates research into new robust waveforms, such as the promising orthogonal time-frequency space (OTFS), which uses the delay-Doppler domain. This waveform can also be exploited for the so-called integrated sensing and communications (ISAC), which further expands the range of possible new services. However, OTFS suffers from a large pilot overhead in channel estimation. In this paper, we propose a channel estimation and sensing technique based on OTFS and superimposed training (ST) to eliminate the pilot overhead while maintaining an affordable computational complexity.	Sub-WG2	2023-05-03 12:29:32	lianet	Méndez-Monsanto Suárez	100384026	IIC3M
	10(23)03044	Aillaua	Communications	prior overnicau writte maintaining an arror dable computational complexity.	JUD-WUZ	2023-03-03 12.23:32	Lianet	iviciluez-iviolisalito sudfez	10030402	OCOIVI
		François De Saint Moulin, Christophe Craeye, Luc Vandendorpe, Claude	Novel Electromagnetism-Based Radar Propagation Model for 5G	In order to evaluate the performance of radar and communication systems in future wireless networks, accurate propagation models are needed to predict efficiently the received powers at each node, and draw correct conclusions. In this paper, we present a new radar propagation model based on the electromagnetism theory. It makes the link between the radar equation and the geometrical optics propagation model used in ray-tracing applications, and gives clues about the radar cross section modelling. It is then applied to popular automotive scenarios within the stochastic geometry	WG1 Sub-					
Υ	TD(23)05045	Oestges	and Beyond	framework to observe the impact of such modelling.	WG2	2023-05-03 15:11:08	Francois	De Saint Moulin	francois.de	UCLOUVAIN
				We consider an Extra Large Aperture Array deployed in a indoor scenario and review the degrees of freedom of this system, taking into account the position of the antenna panel and the impact of the ground floor, or the walls on the system performance and its dependence with the communication region (near-field, intermediate-region or far-field). Furthermore, we analyze which is the received power level per antenna as a						
		Adrian Agustin, Xavier	Near-Field MIMO Performance	function of the user position in order to devise efficient methods to select						
Y	TD(23)05046	Mestre	in Indoor Scenarios	antennas and design transceivers.	WG1,WG2	2023-05-04 06:52:12	Adrian	Agustin	adrian.agu	СТТС
Υ	TD(23)05047	Flor Ortiz, Eva Lagunas, Symeon Chatzinotas	Energy and Performance Efficiency for On-Board Radio Resource Management in Satellite Communication Systems Using Neuromorphic Processors and Spiking Neural Networks	In satellite communication systems, efficient utilization of radio resources is critical for maximizing the quality of service and reducing operational costs. Recent advances in neuromorphic computing have shown promising results in various domains, including image and speech recognition, but their potential for radio resource management in satellite communication systems is yet to be fully explored. In this study, we evaluate the performance of two popular neural network architectures, namely, convolutional neural network (CNN) and spiking neural network (SNN), for on-board radio resource management in satellite communication systems. We compare the performance of these networks in terms of throughput and energy consumption when implemented on an Al accelerator (VCK5000) and a neuromorphic processor (Loihi 2). Our experimental results show that SNNs outperform CNNs in terms of throughput and energy consumption. Furthermore, we demonstrate that neuromorphic processors offer significant advantages in terms of processing time and energy consumption compared to traditional computing architectures, which makes them a promising candidate for on-board radio resource management in satellite communication systems.	WG1,WG2, WG3	2023-05-04 07:46:46	Flor	Ortiz	flor.ortiz@	UNILU
T	10(23)03047	Symcon Chatzinotas	INCLINOINS	communication systems.	14403	2023-03-04 07.40:40	1101	JOHUZ	nor.ortiz@	UIVILU

			T	I	1					
				The upcoming IEEE 802.11be standard aims to provide extremely high						
				bitrates to support next generation use cases. Among the proposed features,						
				multi-link operation (MLO) is probably the one contributing most towards						
				this goal. MLO enables new types of devices, i.e., multi-link devices (MLDs),						
				to transmit simultaneously over multiple frequency bands to achieve massive						
				bitrates (reaching 40 Gbps) and, consequently, lower latency. However, the						
				coexistence of MLDs with legacy devices in existing and future wireless local						
				area network (WLAN) deployments has not yet been explicitly investigated.						
				In this work, we investigate different band management policies over a three-	-					
				band densely populated WLAN, allowing MLDs to use one or more bands for						
				the access procedure and data transfer. We evaluate, via extensive						
				simulations, the access delay of the devices and the network throughput						
				with respect to the ratio of legacy devices and MLDs. We show that by using						
		Daniele Medda,	1 -	, , , , , , , , , , , , , , , , , , , ,						
		Athanasios Iossifides,	1	throughput and access delay arise that need careful consideration to avoid						
Υ	TD(23)05048	Periklis Chatzimisios	Devices of Different Capabilities	performance degradation.	VT4	2023-05-04 09:38:50	Daniele	Medda	dmedda@ IHU	
				6G envisions new services such as holographic communica tions, virtual						
				reality, digital twins, fiber on the sky, augmented						
				reality to name a few of them. These new services will re quire a large						
				capacity and so, they will be allocated in very						
				high frequency bands, e.g., mmWave, TeraHertz, as well as						
				the optical ones (i.e., fiber and optical wireless). Thus, it is						
				foreseen that 6G will combine free-space optic (FSO) and ra dio frequency						
				(RF) bands to offer more capacity, resilience						
				to channel impairments and security (e.g. quantum and post quantum-						
				based security). This paper provides analysis and						
				results on the throughput, and outage probability for the ca pacity, resilient,						
				and security architectures of hybrid optical radio systems. For more						
				accuracy, this paper assumes that						
			ON HYBRID FREE-SPACE OPTIC-	the optical and radio links have atmospheric impairments. In						
			RADIO SYSTEMS AS ENABLERS	the optical link there is a strong turbulence modelled using	WG1,WG2,					
			OF 6G SERVICES OVER NON-	Gamma-Gamma distribution whereas in the radio one there is	VT1,HA2,H					
Υ	TD(23)05051	Marc Amay, Joan Base	TERRESTRIAL NETWORKS	a Nakagami-m fading.	A3	2023-05-04 10:43:58	Marc	Amay	marc.amay CTTC	
				This temporary document describes deep learning models based on						
				convolutional neural networks applied to the problem of predicting EM wave						
				propagation in two scenarios, specifically over rural terrain and in urban						
				areas. The deep learning solution is based on the U-NET architecture. In both						
				scenarios synthetic training data is generated based on a suitable						
				deterministic model. This comprises path loss data computed over randomly						
				generated 1D terrain profiles and 3D urban regions. In the first scenario a						
				surface integral equation formulation, solved with the method of moments						
				and accelerated using the Fast Far Field approximation is used to generate						
				the training data. In this scenario two networks are trained, one based on						
				fractal profiles and one based on profiles generated using a Gaussian						
		l		process. In the second scenario a ray launching tool is used to solve for field						
		Conor Brennan, Kevin		strength in a 1km by 1km environment containing random buildings. ML						
,,	TD/22\0=0=0	McGuinness and Fubin		output is compared to measured data where available and good agreement	WC1	2022 05 04 44 04 12	C	B		
Y	TD(23)05052	Zhang	Loss Models	is observed.	WG1	2023-05-04 11:04:18	conor	Brennan	conor.brer DCU	

The newest Radio Access Technologies (RATs) physical layers are already close to Shannon's limit. System efficiency should be sought today towards a more efficient and flexible use of spectral resources. In-Band Full-Duplex ((IBFD) techniques are one of these research avenues, where the same time-frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback cancellation. This alternative seems highly suitable for this task because		
close to Shannon's limit. System efficiency should be sought today towards a more efficient and flexible use of spectral resources. In-Band Full-Duplex (IBFD) techniques are one of these research avenues, where the same time-frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
close to Shannon's limit. System efficiency should be sought today towards a more efficient and flexible use of spectral resources. In-Band Full-Duplex (IBFD) techniques are one of these research avenues, where the same time-frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
more efficient and flexible use of spectral resources. In-Band Full-Duplex (IBFD) techniques are one of these research avenues, where the same time- frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
(IBFD) techniques are one of these research avenues, where the same time-frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
frequency resource is used to achieve a simultaneous full-duplex operation. However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
However, IBFD nodes face the challenge of canceling the strong loopback signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
signal leaked at the receiver modules. The cancellation requirements of the loopback component up to 80 dB is a complex task requiring a multifaceted approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback	' 	1
approach involving isolation techniques, innovative antenna systems, and a combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback	' 	
combination of analog and digital cancellation algorithms. Our work analyzes a choice of Convolutional Neural Networks (CNNs) for robust loopback		
a choice of Convolutional Neural Networks (CNNs) for robust loopback		
cancellation. This alternative seems highly suitable for this task because		
loopback channels can be considered natural signals with different degrees		
of deterministic features. Convolutional Neural Networks were explicitly		
designed to handle natural signals. CNNs can relate time and frequency		
symbols to extract the interference straightforwardly. Indeed, the results		
Eneko Iradier, Iñigo Al-based Self-Interference indicate that the proposed super-resolution CNN architecture can reduce the		
Bilbao, Jon Montalban, Cancellation for In-Band Full- loopback channel estimation error in the order of tenths of dB when		
Y TD(23)05053 Pablo Angueira Duplex Systems compared to state-of-the-art signal processing methods. WG2 2023-05-04 11:08:18 Eneko Iradier	eneko.irad	EHU
Nano-machines circulating inside of a human body and gathering data about		
tissue conditions are a part of next generation medical diagnostic systems.		
However, in order to perform their functions properly, these devices should		
report not only their medical measurements, but also their positions. In this		
paper, a new localization approach for in-body nano-machines based on		
magnetic field is presented, taking advantage of a very good magnetic		
permeability for all human tissues. The whole proposed localization system is		
described, starting from 10x10 µm2 magnetometers to be integrated into		
the nano-machines, to a set of external wires generating the magnetic field.		
Mathematical equations for localization algorithm are also provided,		
assuming the nano-machines do not perform the calculations themselves,		
but they transmit their magnetic field measurements together with medical		
data outside of the body. The whole system is validated with computer		
simulations taking into account the measurement error of the		
magnetometers, the error induced by the Earth's magnetic field and a		
Krzysztof Skos, Josep Magnetic field localization for in- human body model assuming different possible positions of nano-machines. Miguel legge Page 1 hody page communication and the security shows a year good system accuracy with localization error even.		
Miquel Jornet, Pawel body nano-communication The results show a very good system accuracy with localization error even Y TD(23)05054 Kulakowski medical systems below 1 cm. WG2,VT1 2023-05-04 12:26:43 Pawel Kulakowski	kulakowsk	VCH
TOLEGIOUS INGLANCES INCLUDED INCLUDING INCLUDI	KUIAKUWSK	7011
Latest results on the		
Diego Dupleich, Alexander Licharacterization of propagation In this TD, we present the latest results on measurement campaigns for the Sub-		
Ebert, Yanneck Völker- at (sub-)THz for ISAC in industrial characterization of propagation at (sub-)THz for channel modelling with the WG1.1,Sub-		
	diego-andı	TUIL
This paper will give an overview of the propagation models developed within		
the ITU-R, their evolution (sometimes over several decades) and application		
Propagation modelling in the ITU in the often-controversial context of spectrum sharing and preparation for Y TD(23)05057 Richard Rudd R: challenges and evolution World Radio Conferences. Current issues and challenges will be discussed. WG1 2023-05-04 14:12:11 Richard Rudd	richard.ru	1

			Г		1			1		
		Thomas Feys, Xavier	Self-Supervised Learning of Linear Precoders under Non-	Massive multiple input multiple output (MIMO) systems are typically designed under the assumption of linear power amplifiers (PAs). However, PAs are typically most energy efficient when operating close to their saturation point, where they cause non-linear distortion. Moreover, when using conventional precoders, this distortion coherently combines at the user locations, limiting performance. As such, when designing an energy-efficient massive MIMO system, this distortion has to be managed. In this work, we propose the use of a neural network (NN) to learn the mapping between the channel matrix and the precoding matrix, which maximizes the sum rate in the presence of this non-linear distortion. This is done for a third order polynomial PA model for both the single and multi-user case. By learning this mapping a significant increase in energy efficiency is achieved as compared						
		Mestre, François	Linear PA Distortion for Energy-	to conventional precoders and even as compared to perfect digital pre-						
Υ	TD(23)05059	Rottenberg	0,	distortion (DPD), in the saturation regime.	WG1	2023-05-04 14:47:01	Xavier	Mestre	xavier.mes	сттс І
		Sara Cavallero, Nicol Sarcone Grande, Francesco Pase, Marco Giordani, Joseph Eichinger, Roberto	A New Scheduler for URLLC in 5G NR IIoT Networks with Spatio-	This paper explores the issue of enabling Ultra-Reliable Low-Latency Communications (URLLC) in view of the spatio-temporal correlations that characterize real 5th generation (5G) Industrial Internet of Things (IIoT) networks. In this context, we consider a common Standalone Non-Public Network (SNPN) architecture as promoted by the 5G Alliance for Connected Industries and Automation (5G-ACIA), and propose a new variant of the 5G NR semi-persistent scheduler (SPS) to deal with uplink traffic correlations. A benchmark solution with a "smart" scheduler (SSPS) is compared with a more realistic adaptive approach (ASPS) that requires the scheduler to estimate some unknown network parameters. We demonstrate via simulations that the 1-ms latency requirement for URLLC is fulfilled in both solutions, at the expense of some complexity introduced in the management of the traffic. Finally, we provide numerical guidelines to dimension IIoT networks as a function of the use case, the number of machines in the						
Y	TD(23)05060	Verdone, Michele Zorzi Yang Miao, Andre		factory, and considering both periodic and aperiodic traffic. This paper derives the theoretical sensing capability of the 5G NR synchronization signal (SS) with a True-Time-Delay (TTD) array configuration at UE side. The TTD beamformer separates subcarrier beams into different angular locations for wide-beam coverage, and could be used for opportunistic sensing of environment target during BS downlink synchronization (before communication data transmission). The bistatic sensing performance is described by the derived bistatic AoA(Angle of Arrival)-delay/range-Doppler ambiguity function. The unambiguous region in the delay-range domain with a slowly fluctuating environment target is observed to vary as a function of the number of array elements and of the	VT3	2023-05-04 15:05:52	Sara	Cavallero	s.cavallero	CNIT
Υ	TD(23)05061	Kokkeler	· · · · · · · · · · · · · · · · · · ·	different SS configuration.	Sub-WG2	2023-05-04 15:54:42	Yang	Miao	y.miao@u	UT
	= (==,=====		1 -7				٠ ن	1 11	,	-

				l 						
				Estimation of diffraction loss is essential in wireless network planning and						
				optimization, where detailed building data is available. In the past, a raster-						
				based building rooftop height data extracted from building footprints has						
				been used down to 1 meter resolution. For numerical evaluation of						
				diffraction loss in case of raster-based input data, fast approximate						
				algorithms are used such as R2, XDraw and their various implementations.						
				Currently vector-based 3D city models with high level of detail attract a lot of						
				interest. However, the analysis algorithms with vector data are slow and						
				there are no efficient fast numerical methods. The aim of this work is to						
				create fast numerical diffraction algorithm working with high accuracy 3D						
				vector building data. In the proposed model, diffraction loss is estimated						
				according to ITU-R P.526-15 recommendation using XDraw approximation						
				for fast numerical processing. The algorithm behaves as \$\mathcal{O}(N^2)\$						
				over time by analyzing propagation in rings starting at antenna location and						
				progressing towards the edges of analysis area. In the work, performance						
			Application of XDraw algorithm	and accuracy of diffraction prediction model is compared against traditional						
	F	Rimvydas Aleksiejunas,	for diffraction modeling using 3D	raster-based XDraw algorithm. The results are calculated using buildings data						
Y TD			vector building data		WG1	2023-05-04 19:14:28	Rimvydas	Aleksiejūnas	rimvydas.a\	√U
			-	,			·			
				Sub-THz band's broad bandwidth availability enables the next generation of						
				mobile systems. Because of the useage of the high-gain antennas, the						
				communication link is highly directive and depends on line-of-sight (LoS)						
				channel. As one of the main challenges, the LoS channel can be easily						
				shadowed. Due to the short wavelength, even a limb of a pedestrian can						
				obstruct the the first Fresnel zone and cause deep fading occasionally. To						
				develop the propagation model for the dynamic scenarios, a detailed						
				geometric information (GI) recognition is needed. This paper presents a						
				- - - - - - - - - -						
				l '						
				, , , , , , , , , , , , , , , , , , , ,						
			Synchronized Dynamic Channel	and the prediction based on double knife-edge diffraction (DKED) and						
			Measurement and Motion	uniform theory of diffraction (UTD) shows that the precision of the 3D model						
			Capture for Sub-THz Radio	dominants the accuracy of shadow timing prediction. The results serve as						
			Channel Affected by Human	foundation for future development of ray-tracing simulation for dynamic	WG1,Sub-					
					1					
				synchronized time-variant channel measurement and motion capture at 300 GHz for human body shadowing (HBS) scenario. The captured GI of human body represented as point clouds is used to generate screen models of human body. The comparison of the shadowing gain measurement result						

			T	T				T		
				In FC and because desirables are those Network Clinian (NC) for the contillation						
				In 5G and beyond wireless systems, Network Slicing (NS) feature will enable the coexistence of extremely different services by splitting the physical						
				infrastructure into several logical slices tailored for a specific tenant or						
				application. In sliced Radio Access Networks (RANs), an optimal traffic						
				sharing among cells is key to guarantee Service Level Agreement (SLA)						
				compliance while minimizing operation costs. The configuration of network						
				functions leading to that optimal point may depend on the slice, claiming for						
				slice-aware traffic steering strategies. This work presents the first data-driven						
				algorithm for slice-aware traffic steering by tuning handover margins (a.k.a.						
				mobility load balancing). The tuning process is driven by a novel indicator, derived from connection traces, showing the imbalance of SLA compliance						
				among neighbor cells per slice. Performance assessment is carried out with a						
				system-level simulator implementing a realistic sliced RAN offering services with different throughput, latency and reliability requirements. Results show						
		C Ciián T Mahmaadi	SLA-Driven Traffic Steering in	that the proposed algorithm improves the overall SLA compliance by 9% in only 15 minutes of network activity compared to the case of not steering						
		C. Gijón, T. Mahmoodi,		, , , , , , , , , , , , , , , , , , ,						
Υ	TD/22\05005	M. Toril, S. Luna-Ramírez, J. L. Bejarano-Luque	B5G Systems with Network Slicing	traffic, outperforming two legacy mobility load balancing approaches not driven by SLA.	WG3	2023-05-05 07:58:45	Carolina	Ciion Montin		11848
- 1	TD(23)05065	J. L. Bejarano-Luque	Silcing	Communications and sensing are two adjacent branches of radiowaves	WGS	2023-05-05 07:58:45	Carolina	Gijon Martin	cgm@ic.ur	UIVIA
				application. Nowadays, networks demand both to be combined in a unified						
				device sharing the same hardware and spectrum. Such a system is known as						
				integrated sensing and communication (ISAC). Geometry-based stochastic						
				channel model (GBSCM), such as 3GPP TR38.901, is a common solution for						
				testing traditional communications. However, this model has to be extended						
				to meet other requirements of ISAC. Sensing algorithms demand the						
				existence of objects in the channel model to be located, tracked, and						
				recognized. Such objects should be described deterministically by their						
				position in space, velocity, and acceleration, which is impossible within the						
				standard stochastic channel model. That approach attempts to combine the						
				accuracy of deterministic methods and the performance of stochastic						
				modeling methods. An essential point of such a hybrid channel model is						
				scalability, as the level of determinism can be adjusted to find a tradeoff. A						
				model with a focus on stochastic modeling was proposed and discussed in						
		A.Ziganshin, D.Czaniera,	GBSCM Channel Modeling for	the paper. The limitations of such a model were discussed and shown by	WG1,WG2,					
Υ	TD(23)05066	C.Schneider, R.Thomä	ISAC Evaluation	simulations.	Sub-WG2	2023-05-05 08:24:02	Ainur	Ziganshin	ainur.zigar	TUII
	15(25)05000	C.Scillicider, N. Thoma	15/16 Evaluation	Simulations.	305 1102	2023 03 03 00.24.02	711101	Ligaristini	uman.zigai	TOIL
				End-to-end design of communication systems using deep autoencoders (AEs)						
				is gaining attention due to its flexibility and excellent performance. Besides						
				single-user transmission, AE-based design is recently explored in multi-user						
				setup, e.g., for designing constellations for non-orthogonal multiple access						
				(NOMA). In this paper, we further advance the design of AE-based downlink						
				NOMA by introducing weighted loss function in the AE training. By changing						
				the weight coefficients, one can flexibly tune the constellation design to						
				balance error probability of different users, without relying on explicit						
		Vukan Ninkovic, Dejan		information about their channel quality. Combined with the SICNet decoder,						
		Vukobratovic, Adriano	A Weighted Autoencoder-Based	we demonstrate a significant improvement in achievable levels and flexible						
		Pastore, Carles Anton-	Approach to Downlink NOMA	control of error probability of different users using the proposed weighted						
Υ	TD(23)05068	Haro	Constellation Design	AE-based framework.	WG2,HA1	2023-05-05 08:45:38	Vukan	Ninkovic	ninkovic@	UNS
	15(25)05000	1.10.0	COStellation Design	ne sassa namenorm	02,117.11	2020 00 00 00.40.00	· andii	T. T	IIIIKO VICE	55

		1	ı	T	1	1		1		-
Υ	TD(23)05069	Andreas Fuchs, Lukas Wielandner, Daniel Neunteufel, Holger Arthaber, Klaus Witrisal	Wideband TDoA Positioning Exploiting RSS-Based Clustering	Integrated Sensing and Communication (ISAC) is recognised as one of the key enabling technologies of the upcoming sixth generation (6G) wireless network. The last research frontier of ISAC systems is the transmission of a single waveform through a completely shared hardware platform and an optimized frequency/time/space resources allocation that tunes the trade-off between the intended communication and sensing requirements. In this paper, we dwell on the experimental demonstration of the benefits of an ISAC waveform scheme that superposes onto the frequency-time domain both the legacy orthogonal frequency division multiplexing (OFDM) and a sensing signal that exploit Out-Of-Band (OOB) emission. This latter can be designed both with classical frequency-time chirp and with a delay-Doppler	WG2	2023-05-05 09:19:07	Andreas	Fuchs	afuchs@tu	ΓUGRAZ
		Davida Casanali, Francesco		impulse. The experiments' results show that the tested ISAC co-						
		Davide Scazzoli, Francesco		design is capable of accurately scanning and mapping an indoor						
		Linsalata, Dario		environment and estimating the tangential speed of the moving						
		Tagliaferri, Marouan	On the Experimental	targets. Moreover, we demonstrate that the interference of the						
		Mizmizi, Damiano Badini,	Demonstration of Joint	superimposed sensing signal at the communication receiver is low						
		Maurizio Magarini, and	Communication and Sensing	enough that the impact on the communication performance is	WG2,Sub-					
Υ	TD(23)05070	Umberto Spagnolini	Waveform Design	imperceptible	WG2	2023-05-05 10:04:18	Francesco	Linsalata	francesco.	POLIMI

						1	.	1		
Y	TD(23)05072	Yann Maret, Mohsin Raza, Franck Legendre, Nik Bessis, Jean-Frédéric Wagen	Improving the performance of OLSRouting using PHY-IP information for realistic V2V/MANETS	Optimized routing algorithms are of most importance for Mobile Ad-hoc NETworks. The routing protocol offers a route to the destination and adapts the path when the network changes. The popular routing algorithm, Optimized Link State Routing (OLSRv2) is evaluated in realistic real time emulations using the open source EMANE platform and the open Anglova scenario. The effect of fading is analyzed to account for the mobile wireless environment. OLSR estimates the quality of each link by processing received HELLO packets. OLSR has limited performance in scenario with fading and can lead to a poor completion ratio: 67% for the 24-node Anglova company 1 scenario. The proposed solution called OLSR+PHY uses the physical layer estimate of the Signal to Interference and Noise Ratio (SINR) to drop the HELLO packets received with poor SINR. OLSR+PHY mitigates routes flapping and data packet loss. The completion ratio of acked-messages is improved to 79% while the Round Trip Time is only increased from 0.6 to 1s.	WG3	2023-05-05 13:33:34	Yann	Maret	yann.mare	HES SO
•	15(25)03072		127,117,111213	7-576 Time the floating trip time is only increased from 0.0 to 13.		2023 03 03 13.33.34	141111	THUI CL	yannındiği	112330
		Dheeraj Raja Kumar, Carles Anton-Haro, Xavier	Deep Learning-based Receivers	In this paper, we propose data-driven receivers for multi-input multi-output (MIMO) Rate Splitting Multiple Access (RSMA) system by using neural networks. The evolution of the neural network performance as the system size scales up in the underloaded regime has been thoroughly analyzed. Simulation results compare the performance of the proposed schemes against that of the conventional and exhaustive search receiver						
Υ	TD(23)05073	Mestre	Access	benchmarks.	WG2	2023-05-05 14:45:54	Dheeraj	Raja Kumar	drajakuma	сттс
			An analysis of Goodput and Delivery Ratio using simple	Multi-user system level simulations and emulations is increasingly important to optimize the use of a given radio spectrum resource. From the users perspective the optimization depends on the service or application. Typically either the highest possible Goodput (useful data user bit rate) is desired or, given a transmitted data rate, the highest possible Packet Delivery Ratio (or lowest Packet Error Rate) is desired. Latency can also be an important requirement. How to optimize and trade-off these metrics in a time varying environment is particularly complex in Vehicular to Vehicular (V2V) or MANET communication system due to the required routing, scheduling and flow control. This contribution considers a rather simple simulation of a realistic MANET (Anglova.net) to provide an analysis of Goodput and Delivery Ratio for several routing metrics. The Goodput-Delivery Ratio product is nearly optimal if the shortest path routes are based on the MANET Graph weighted by the inverse of the SINR. Using SINR is better than using the classical Link Quality which does not distinguish good links from very good and thus more stable links. The routes can be kept for 4 to even 20s in the realistic Anglova.net scenario. These observations hold for three propagation models (Holm, Longley-Rice, Bullington) and two fading models (abstract PHY, no fading+Rayleigh).						
		Fred Wagen and Yann		Emulation results and measurements remain to be conducted to (dis)prove						
Υ	TD(23)05074	Maret	Anglova.net	these conclusions.	WG3,VT2	2023-05-05 14:52:27	Jean Frederic	Wagen	jean-frede	HES SO

				Reconfigurable intelligent surfaces (RIS), which can be implemented using						
				metasurface technology or reflect/transmit antenna array technology, have						
				garnered significant attention in research studies focused on both their						
				technological aspects and potential applications. While various modeling						
				approaches have been proposed - ranging from electromagnetic simulations						
				and analytical integral formulations to over-simplified approaches based on						
				scattering matrix theory - there remains a great need for efficient and						
				electromagnetically-consistent macroscopic models that can accurately						
				simulate scattering from RISs, particularly for realistic simulations of RIS-						
				based wireless networks.						
				Building on previous work based on the a characterization of the RIS through						
				a surface impedance (or "spatial modulation") function and a few						
				parameters, in the present paper we propose a fully ray-based approach for						
				the computation of the re-radiated field that can be easily embedded in						
				efficient, forward ray tracing (also known as "ray launching") models.						
				We validate the proposed model by comparison to well established methods						
		Enrice M. Vituesi Mattee	An Efficient Day Bosed Madeling	· · · · · · · · · · · · · · · · · · ·						
				available in the literature. Results show that, although the considered						
			Approach for Scattering from	method is based on a completely different formulation and is much more	WC4 Cub					
v	TD/22\05075	Barbiroli and Vittorio	Reconfigurable Intelligent Surfaces	efficient than integral formulation methods, results are almost	WG1,Sub-	2023-05-05 16:53:07	Funite Manie	Vitucci	enricomari	LINURG
Y	TD(23)05075	Degli-Esposti	Surraces	indistinguishable in a number of benchmark cases.	WG1.2	2023-05-05 16:53:07	Enrico iviaria	Vitucci	enricomari	ONIBO
				We investigate the potential capacity gains acquired by adopting an adaptive						
				transmit power and rate approach when communicating in the terahertz						
				(THz) band considering the peculiarities of the channel. Given the high path						
				, , , , , , , , , , , , , , , , , , , ,						
				loss experienced at the THz band, highly directive communication links using						
				high directional antennas are used, hence making antenna alignment a						
				critical aspect to consider. Therefore, we highlight the impact of antenna						
				misalignment on the potential gains brought by the adaptive power and rate						
				schemes. Analytical expressions are provided taking into account the joint						
				effects of the channel and antenna misalignment fading. The results confirm						
			On the Constitute of Binney	potential capacity gains of the adaptive power and rate scheme in the low						
v	TD/22\05055	Lutfi Samara, Mate	On the Capacity of Directional	signal-to-noise ratio (SNR) regime and when the antenna alignment error		2022 05 05 47-22 50	1	6	16:	
Υ	TD(23)05076	Boban, Thomas Kürner	Terahertz Links	variance is high.	WG2	2023-05-05 17:38:59	LUTTI	Samara	lutfiz.sama	HUAWEI

							<u> </u>			
				The fulfilment of requirements of 5G systems and beyond, brings the need						
				for the deployment of mm-frequencies. Knowledge of the propagation						
				channel characteristics is crucial for the correct design of wireless systems. As	:					
				such, the impact of buildings on signal propagation, thus, Outdoor to Indoor						
				and through floors attenuation, needs to be understood and carefully						
				characterized at mm waves. To this aim, two measurement campaigns at 28						
				and 38 GHz were carried out to investigate the aforementioned issues. In						
				order to evaluate Outdoor to Indoor losses, two different buildings were						
				considered: the first being an old residential building and the second a						
				modern office building. It was observed from the measurements that losses						
				increase with around 20 dB when moving 5 meters inside the building with						
				respect to the external illuminated wall. Measurements have also been						
				compared with the 3GPP TR 138 901 model, which applies for frequencies up						
				to 100 GHz. The other campaign, aiming to evaluate the propagation losses						
				through building floors at 27 and 38 GHz, was conducted in four different						
				buildings with different floor construction. The observed trend is that more						
				modern the construction techniques become, more difficult it is for signals to						
				propagate through the floors, due to the presence of metallic structures and						
				reinforced concrete. The floor construction technique strongly affects the						
		Silvi Kodra, Marina		propagation through floors, in a such way that for most of the considered						
		Barbiroli, Enrico Vitucci,	Measurement based evaluation	buildings it is impossible for the signal to penetrate after one floor. This						
		Franco Fuschini, Vittorio	of outdoor to indoor and in-	brings the need for standardizations that accurately account for the through						
Υ	TD(23)05077	Degli Esposti	building losses at mm-waves	floor propagation at mm-wave frequencies.	Sub-WG1.1	2023-05-05 18:34:45	Silvi	Kodra	silvi.kodra:	UNIBO
				Together with cell-free networks, small cells enable ultra-dense networks in						
				5G. Although small cell networks will be						
				part of heterogeneous networks, the comparison of service quality of urban						
				micro (UMi) small cells between 4G and 5G second phase scenarios is still of						
				great relevance. Usage of video (VID), is considered. Quality of service is						
				determined by considering a packet loss ratio (PLR) lower than 2%, for						
				different sub-6 GHz frequency bands. The aim is to compare the system						
				capacity between 4G and 5G New Radio (NR) enhanced mobile broadband in						
				different bands. ITU defined two UMi cell scenarios for UMi cells that						
				consider two-slope (TS) path loss models (PLMs). In this work, we have						
				included TS-PLMs into the LTE-Sim (4G) and 5G-air simulator. The service						
				quality and system performance bands have then been evaluated. Results						
				shows that it is possible to support more user terminals (UTs) with 5G NR (up						
			Impact of the Two-Slope Path	to 26 UTs) than with 4G (10 UTs only). When PLR<2%, the average delay						
		Rui R. Paulo and Fernando	Loss Model in the Service Quality	decreases and the average goodput increases when 5G is considered. The						
Υ	TD(23)05078	J. Velez	of 4G and 5G Small Cells	maximum average goodput also increases with 5G NR.	WG3,VT4	2023-05-05 21:30:55	Fernando José	VELEZ	fjv@ubi.pt	UBI
	, ,			Besides information sharing, the received wireless communication signals	,				, , ,	
				can be used to gather knowledge about the transmitting devices, about						
				properties of the surrounding environment, or to track users in the						
				monitored area. This temporary document presents our work in progress,						
		Malek Ali, Roman		focused on the application of selected machine learning and signal						
		Marsalek, Jan Bolcek,		processing methods to estimate the number of targets, i.e., persons, from						
		Radim Zedka, Josef	Target detection methods from	delay-Doppler images, and discusses the advantages and drawbacks of						
		Vychodil, Ladislav Polak,	2D delay-Doppler OTFS	various approaches including machine learning or mathematical morphology	Sub-					
Υ	TD(23)05083	Golsa Ghiaasi	snapshots	methods.		2023-05-05 21:49:48	Roman	Marsalek	marsaler@	VUT
	. 5(25)05005	CO.SG GIIIGGSI	51.ap51.5t5	[ca.icac.	1	12020 00 00 21.40.40		T. T. G. SOICK		

				The advent of novel 5G services and applications with binding latency						
				requirements and guaranteed Quality of Service (QoS) hastened the need to						
				incorporate autonomous and proactive decision-making in network						
				management procedures.						
				The objective of our study is to provide a thorough analysis of latency within						
				5G networks by utilizing real-world						
				network data that is accessible to mobile network operators (MNOs). In						
				particular, we present an analytical formulation						
				of the user-plane latency as a Hypoexponential distribution, which is						
				validated by means of a comparative analysis with						
		Francesca Conserva, Nicol	A Theoretical and Experimental	empirical measurements. We test our framework using data gathered from						
		Sarcone Grande, Marco	Analysis of 5G Network Latency:	scenarios of vehicular mobility, dense-urban traffic, and social gathering						
Υ	TD(23)05084	Skocaj, Roberto Verdone	a Data-Driven Approach	events.	WG3	2023-05-08 08:01:43	Francesca	Conserva	francesca.	CNIT
69										·

72

74

20

25

WIRS

E2

44

22

42

70

31

8

38

32

Newsletter

18:30 Performance

17:30

			BARCELONA MEETING	/ 22-25 May	2023					
	Tuesday 23/05				Wednesday 24/05				Thursday 25/05	
08:30	Welcome			08:30	Welcome				08:30 Welcome	
09:00	PLENARY	Auditorium B6+B4 On	line	09:00		HUB	E2	E3	09:00 Auditorium	
	NA				WG1-WG2 Perf	WG1 - RT	VT4-WG3 Alloc.	VT1	ISAC-WG1 Mo	
	Management Comitt General Information	ee meeting			43 5	30 62	i 7	4	66	26 Disc VT2 75
	General Information				5 46	18	48 23	9 41	45	17
					76	10	78	54	1	Disc RIS (Ctd)
10:30	Coffee break			10:30	Coffee break		, ,,	34	10:30 Coffee break	Disc Nis (ctu)
11:00	PLENARY	Auditorium B6+B4 On	line	11:00		HUB	E2	E3	11:00 PLENARY	Auditorium B6+B4 Online
					VT2-WG1	WG2 - Mul. Acc.	WG3	EMF-WG1		
	Keynotes	Richard Rudd (TD 57)			29	40	j 3	14	Keynote	Carles Anton
		Angel Lozano			2 12	I 73	J 37 Disc WG3	15	MC meeting	Summary of WG activities
					39	I 08	l DISC WG5	52 Disc EMF	INIC meeting	Summary of WG activities
12:30	Lunch			12:30			•	DISC LIVII	12:30 Lunch	
13:30		Video	WIRS							
		Recording								
14:00		HUB	E2	14:00		HUB	E2	E3		
	WG1 - Mes.	WG2 Coding - IA	WG3 - Res. Man.		WG1 - Models	WG2-ISAC - Loc	VT3			
	6	27	47		34	19	55	DISC VT4		
	63	10	33		11	69	84			
	77	53	51		28	61	60			
15.20	16 Coffee break	l 59	l 65	15.20	36 Coffee break	l 83	<u> </u>			
15.30	Conee break			15:30	Corree break					
16:00	Auditorium B6	HUB	E2	16:00	Auditorium B6	HUB	E2	E3		
	VT2-WG1 - Space	ISAC-WG2	WG3-VT2							
					B1 14404					

Disc WG2

Disc ISAC

Disc VT1

Disc EMF (Ctd)

Disc VT3

Disc WG1

Disc THz

Disc RIS

18:00 Departure to social event and dinner

17:30

This information is collected for the purpose of checking eligibility for reinhursement of your expenses under the COST Amotated Rules-ton COST Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgion law. If will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case for safety purposes where it will be transferred to the landlord of the premises and emergency services.

MEETING ATTENDANCE LIST (CORE GROUP MEETING - 2023-05-22)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65

Meeting Administrator: Flaminia Saratti

E-mail: flaminia.saratti@unibo.it

Mee	eting Administrator: Flaminia Saratti		E-mail: flaminia.saratti@unibo.it		
Cor	e Group - Core Group Meeting (Start Date:	: 2023-05-22 End [Date: 2023-05-22)		
Nr	Participant	Country	Signature		
1	Anton-Haro, Carles carles.anton@cttc.es	ES	CANS		
2	Buratti, Chiara c.buratti@unibo.it	ΙΤ	Quona Berray		
	Clavier, Laurent laurent.clavier@imt-nord-europe.fr	FR	le a		
	Correia, Luis M luis.m.correia@tecnico.ulisboa.pt	PT	Curtan		
	Czapiewska, Agnieszka agnieszka.czapiewska@pg.edu.pl	PL	Cropier		
	Deruyck, Margot margot.deruyck@ugent.be	BE	V		
	Saratti, Flaminia flaminia.saratti@unibo.it	IT (20 Sp		
0					
1					

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-Tor-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Core	Group - Core Group Meeting	(Start Date: 2023-05-22 End Date: 202	23-05-22)	
Nr	Participant	Country	Signature	
12				

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

Meeting Secretary

(Chair or local organiser)

Name + signature

This information is collected for the purpose of checking eligibility for recobursement of your expenses under the COST Administration COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. If will be kept for the puration of COST audit obligations as mentioned in the privacy notice for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

MEETING ATTENDANCE LIST (OTHER COST RELEVANT MEETING - TRAINING DAY - 2023-05-22)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65 Action Number: CA20120

Meeting Administrator: Flaminia Saratti E-mail: flaminia.saratti@unibo.it

Participant	Country	Signature
Agustin, Adrian adrian.agustin@cttc.cat	ES	
ahmadi, hamed hamed.ahmadi@ucd.ie	UK	
Aleksiejūnas, Rimvydas rimvydas.aleksiejunas@ff.vu.lt	LT	Ally
Ali, Mohsin engineermohsinali@gmail.com	PK	<i>V</i>
Amay, Marc Jovan marc.amay@cttc.es	ES	Jen -
Anton-Haro, Carles carles.anton@cttc.es	ES	CANES!
ARSLAN, Hüseyin arslan.usf@gmail.com	TR	H. Arsh
Bajić, Dragana dragana.bajic@gmail.com	RS	,
Bas, Joan joan.bas@cttc.es	ES	
Berbakov, Lazar lazar.berbakov@pupin.rs	RS	
Blazek, Thomas homas.blazek@silicon-austria.co	m AT	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST. Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law II will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST, it won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Oth	er - Other COST relevant meeting - Trainir	ng Day (Start Dat	te: 2023-05-22 End Date: 2023-05-22)
Nr	Participant	Country	Signature
12	Boban, Mate mate.boban@huawei.com	DE	
13	Bota, Vasile Vasile.Bota@com.utcluj.ro	RO	
14	Brennan, Conor conor.brennan@dcu.ie	ΙE	
15	Brown, Tim t.brown@surrey.ac.uk	UK	
16	Buratti, Chiara c.buratti@unibo.it	ΙΤ	Married projet
17	Burr, Alister alister.burr@york.ac.uk	UK	
18	Chatzimisios, Periklis pchatzimisios@ihu.gr	EL	
19	Chatzinotas, Symeon schatzin@ieee.org	LU	
20	Cichoń, Krzysztof krzysztof.cichon@put.poznan.pl	PL	
21	Clavier, Laurent laurent.clavier@imt-nord-europe.fr	FR	Lille
22	Conserva, Francesca francesca.conserva@unibo.it	ΙΤ	
23	Correia, Luis M luis.m.correia@tecnico.ulisboa.pt	PT	
24	Csatho, Botond Tamas csatho.botond@edu.bme.hu	HU	
25	Cwalina, Krzysztof kkcwalina@eti.pg.edu.pl	PL	& Cooke
26	Czapiewska, Agnieszka agnieszka.czapiewska@pg.edu.pl	PL	& Crohe Crepient

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Paules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Betgien law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and envergency services.

Other - Other COST relevant meeting - Training Day (Start Date: 2023-05-22 End Date: 2023-05-22)

Nr	Participant	Country	Signature
27	Czylwik, Andreas czylwik@nts.uni-duisburg-essen.de	DE	A. N
28	d'Orey, Pedro pdorey@fe.up.pt	PT	•
29	Dakic, Anja anja.dakic@ait.ac.at	AT	20164th Alba
30	Das, Kallol kallol.das@tno.nl	NL	
31	De Saint Moulin, François francois.desaintmoulin@uclouvain.be	BE	
32	Degli-Esposti, Vittorio v.degliesposti@unibo.it	IT	
33	Deruyck, Margot margot.deruyck@ugent.be	BE	
34	Di Renzo, Marco marco.di-renzo@universite-paris-saclay.fr	FR	
35	Dittmann, Lars Id@com.dtu.dk	DK	
36	Drozdowska, Monika mdrozdo@upv.edu.es	ES	
37	Dupleich, Diego diego-andres.dupleich@tu-ilmenau.de	DE	Syod (
38	Ebert, Alexander alexander.ebert@tu-ilmenau.de	DE	« A. EleA
39	Ekman, Torbjörn torbjorn.ekman@ntnu.no	NO	
40	Fan, Wei wfa@es.aau.dk	DK	
41	Fontanesi, Gianluca fontanesi.gianluca@outlook.com	LU	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. If will be kept for the duration of COST audit optigations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the

ir	Participant	Country	Signature
?	Fuchs, Andreas afuchs@tugraz.at	AT	
	Gaillot, Davy davy.gaillot@univ-lille.fr	FR	
•	Garcia Armada, Ana agarcia@tsc.uc3m.es	ES	
	Garcia-Pardo, Concepcion cgpardo@iteam.upv.es	ES	
	Gardasevic, Gordana gordana.gardasevic@etf.unibl.org	ВА	
	Ghiaasi, Golsa golsa.ghiaasi@silicon-austria.com	АТ	N
}	Gijon Martin, Carolina cgm@ic.uma.es	ES	(0)
)	Guan, Ke kguan@bjtu.edu.cn	CN	
	Haddad, Yoram haddad@g.jct.ac.il	IL	
	Haneda, Katsuyuki katsuyuki.haneda@aalto.fi	FI	
	Hannotier, Cédric cedric.hannotier@ulb.be	BE	
	Hofer, Markus markus.hofer@ait.ac.at	AT	
	Horvath, Balint horvath.balint@vik.bme.hu	ни	
	Hristov, Atanas atanas.hristov@uist.edu.mk	MK	
	Iradier, Eneko eneko.iradier@ehu.eus	ES (~	Siarl

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Automs-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law it will be kept for the suration of COST audit obligations as mentioned in the privacy notice for e-COST. It want be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Other - Other COST relevant meeting - Training Day (Start Date: 2023-05-22 End Date: 2023-05-22)

Nr	Participant	Country	Signature
57	Ivashina, Marianna marianna.ivashina@chalmers.se	SE	
58	Joseph, Wout wout.joseph@ugent.be	BE	
59	Kang, CheChia kang.c.aa@m.titech.ac.jp	JP	
60	Katzis, Konstantinos K.Katzis@euc.ac.cy	CY	
61	Keerativoranan, Nopphon nopphon.keerativoranan@ap.ide.titech.ac.jp	JP	
62	Kliks, Adrian adrian.kliks@put.poznan.pl	PL	
63	Kocan, Enis enisk@ucg.ac.me	ME	
64	Kodra, Silvi silvi.kodra2@unibo.it	ΙT	Sky.
65	Kokkoniemi, Joonas joonas.kokkoniemi@oulu.fi	FI	
66	Kułakowski, Paweł kulakowski@agh.edu.pl	PL	R,
67	Kürner, Thomas kuerner@ifn.ing.tu-bs.de	DE	
68	Lager, loan Ernest i.e.lager@tudelft.nl	NL	
69	Lagunas, Eva eva.lagunas@uni.lu	LU	
70	Larsson, Christina christina.c.larsson@ericsson.com	SE	
71	Lehne, Per Hjalmar per-hjalmar.lehne@telenor.com	NO	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST primities, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Nr	Participant	Country	Signature
72	Linsalata, Francesco francesco.linsalata@polimi.it	IT	
73	Liotou, Eirini eirini.liotou@iccs.gr	EL	
74	Lipovac, Adriana adriana.lipovac@unidu.hr	HR	
75	Machaj, Juraj juraj.machaj@feit.uniza.sk	SK	
6	Magarini, Maurizio maurizio.magarini@polimi.it	ΙΤ	^
7	Mallik, Mohammed mohammed.mallik.etu@univ-lille.fr	FR	Mulde
8	Mangues, Josep josep.mangues@cttc.cat	n/a	[mh]
}	Manzoor, Hira hira.manzoor@pg.edu.pl	PL	


CH

CZ

ES

NL

Malm

Maret, Yann

yann.maret@hefr.ch

Marsalek, Roman

marsaler@vut.cz

Martin-Vega, Francisco J.

80

81

82

86

y.miao@utwente.nl

This information is collected for the purpose of checking aligibility for reimbursement of your expenses, under the COST Annotated-Rules-for-COST-Actions-Lived-C and, when the ineeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as intentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Nr	Participant	Country	Signature
87	Mikhaylov, Konstantin konstantin.mikhaylov@oulu.fi	FI	
88	Mlinar, Tomi tomi.mlinar@fe.uni-lj.si	SI	
89	Molina-Garcia-Pardo, Jose-Maria josemaria.molina@upct.es	ES	
90	Muzaffar, Raheeb raheeb.muzaffar@silicon-austria.com	АТ	Prott
91	Navarro, Andres anavarro@icesi.edu.co	со	Marano C.
92	NGOM, Mamadou grandngom606@gmail.com	FR	UL E
93	Ninkovic, Vukan ninkovic@uns.ac.rs	RS	
94	Oestges, Claude claude.oestges@uclouvain.be	BE	
95	Orozco, Luis luis.orozco@uclm.es	ES	
96	Ortiz, Flor flor.ortiz@uni.lu	LU	
97	Otero Martinez, Javier jotero@tsc.uc3m.es	ES	Januar Starson
98	Ozdemir, Mehmet Kemal mkozdemir@medipol.edu.tr	TR	
99	Papaj, Ján jan.papaj@tuke.sk	SK	
100	Pasic, Faruk faruk.pasic@tuwien.ac.at	AT	Finds.
1 01	Pedersen, Troels troels@es.aau.dk	DK	

This information is collected for the purpose of checking eligibility for raimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our tegal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the prevacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Yr Participant	Country	Signature
Pejanovic-Djurisic, Milica milica@ucg.ac.me	ME	
Peschiera, Emanuele emanuele.peschiera@kuleuver	n.be BE	lulph
Plets, David david.plets@ugent.be	BE	
Radovic, Danilo danilo.radovic@tuwien.ac.at	AT Da	nib
Radpour, Hamed radpour.hamed@gmail.com	AT 1	nib
Rainer, Benjamin benjamin.rainer@ait.ac.at	АТ	
Raja Kumar, Dheeraj drajakumar@cttc.es	ES	
Rajchowski, Piotr piorajch@eti.pg.edu.pl	PL	
Reig, Juan jreigp@dcom.upv.es	ES	
Rudd, Richard richard.rudd@plumconsulting.co	o.uk UK	
Ruiz Boqué, Silvia silvia.ruiz@upc.edu	ES	
Rumney, Moray moray@rumneytelecom.com	UK	
Salous, Sana sana.salous@durham.ac.uk	UK	
Samara, Lutfi lutfiz.samara@huawei.com	CN	
Saratti, Flaminia flaminia.saratti@unibo.it	IT Ye	SM

This information is collected for the purpose of checking alignitity for reimbursement of your expenses under the COST Amounted Roles-for-COST-Actions-Level-C and, when the meeting takes place in COST memises, for safety purposes in compliance with our legal obligations under Belgian law. If will be kept for the duration of COST audit obligations as mentioned in the provey notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Other - Other COST relevant meeting - Training Day (Start Date: 2023-05-	22 End Date: 2023-05-22\

Nr	Participant	Country	Signature
117	Sarrazin, Julien julien.sarrazin@sorbonne-universite.fr	FR	
118	Sayrafian, Kamran kamran.sayrafian@nist.gov	US	
119	Schiffarth, Anna-Malin schiffarth@ihf.rwth-aachen.de	DE	Stylve
120	Schneider, Christian christian.schneider@tu-ilmenau.de	DE	
121	Shah, Syed Najaf Haider syed-najaf-haider.shah@tu-ilmenau.de	DE	Duff
122	Skachek, Vitaly vitaly.skachek@gmail.com	EE	·
123	Skocaj, Marco marco.skocaj@unibo.it	ΙΤ	
124	Skoric, Tamara tamara.ceranic@gmail.com	RS	
125	Skos, Krzysztof krzysztof.skos@gmail.com	PL	
126	Skrivervik, Anja anja.skrivervik@epfl.ch	СН	
127	Smeenk, Carsten carsten.smeenk@iis.fraunhofer.de	DE	C. Snach
128	Sommerkorn, Gerd som@tu-ilmenau.de	DE	
129	Spagnolini, Umberto Umberto.Spagnolini@polimi.it	IT	
130	Steinboeck, Gerhard Gerhard.steinbock@ericsson.com	SE	
131	Stojkoska, Biljana biljanastojkoska@yahoo.com	MK	

This information is collected for the purpose of checking aligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian taw. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

	er - Other COST relevant meeting - Training [
Nr	Participant	Country	Signature
132	Sykora, Jan jan.sykora@fel.cvut.cz	CZ	
133	Taramit, Hamid hamid.taramit@alu.uclm.es	ES	
34	TESFAY, Angesom angesom.tesfay@imt-nord-europe.fr	FR	
35	Thomä, Reiner reiner.thomae@tu-ilmenau.de	DE	
36	Timcenko, Valentina valentina.timcenko@pupin.rs	RS	Burn
37	Tonyali, Samet samettonyali29@gmail.com	TR	
38	Torres, Renato rbtorres93@gmail.com	ES	
39	Torrico, Saul storrico@gwu.edu	US	Sal
40	Vassiliou, Vasos vasosv@ucy.ac.cy	CY	
41	VELEZ, Fernando José fjv@ubi.pt	PT	
42	Verdone, Roberto roberto.verdone@unibo.it	IT	
43	Villemaud, Guillaume guillaume.villemaud@insa-lyon.fr	FR	
14	Vitucci, Enrico Maria enricomaria.vitucci@unibo.it	IT	
15	Wagen, Jean Frederic jfowagen@gmail.com	СН	Tras
4 6	Wilding, Thomas thomas.wilding@tugraz.at	АТ	

This information is collected for the purpose of checking eligibility for mimbursement of your expenses under the COST Annotated-Rules for COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Gelgitin law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

lr Participant	Country	Signature
Witrisal, Klaus witrisal@tugraz.at	AT	
Yuan, Zhiqiang zhyu@es.aau.dk	DK	
Zammit, Joseph A. joseph.a.zammit@mcast.edu	.mt MT	
Zanaj, Elma ezanaj@fti.edu.al	AL	
Zentner, Radovan radovan.zentner@fer.hr	HR	
Zeydan, Engin engin.zeydan@cttc.cat	n/a	Seln
Zhang, Haibin haibin.zhang@tno.nl	NL	
Zhang, Peize peize.zhang@oulu.fi	FI	
Ziganshin, Ainur ainur.ziganshin@tu-ilmenau.	de DE	/
cardora, Narcin	es es	
57		,
58		
9		
0		

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT),

160

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated Rules for COST Actions Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian raw if will be kept for the duration of COST audit obligations as mentioned in the provide notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and amergency services.

Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

Meeting Secretary

(Chair or local organiser)

Name + signature

This information is collected for the purpose of checking abgibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal philipations under Belgian taw, if will be kept for the duration of COST audit obligations an greationest in the privacy notice for e-COST, if won't be transferred to any limit party except in court of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

MEETING ATTENDANCE LIST (MANAGEMENT COMMITTEE MEETING - 2023-05-23)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65 Action Number: CA20120

Meeting Administrator: Flaminia Saratti E-mail: flaminia.saratti@unibo.it

Management Committee - Management Committee Meeting (Start Date: 2023-05-23 End Date: 2023-05-25) Nr **Participant** Country Signature Aleksiejūnas, Rimvydas 1 LT rimvydas.aleksiejunas@ff.vu.lt ARSLAN, Hüseyin 2 TR arslan.usf@gmail.com Bajić, Dragana 3 RS dragana.bajic@gmail.com Berbakov, Lazar 4 RS lazar.berbakov@pupin.rs Bota, Vasile 5 RO Vasile.Bota@com.utcluj.ro Brennan, Conor 6 ΙE conor.brennan@dcu.ie Buratti, Chiara 7 IT c.buratti@unibo.it Burr, Alister 8 UK alister.burr@york.ac.uk Chatzimisios, Periklis 9 EL pchatzimisios@ihu.gr Chatzinotas, Symeon 10 LU schatzin@ieee.org Le Chi Clavier, Laurent 11 FR laurent.clavier@imt-nord-europe.fr

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Adnotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal philipations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notion for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

۷r	Participant	Country	Signature
12	Correia, Luis M luis.m.correia@tecnico.ulisboa.pt	PT	Cuestion
13	Cwalina, Krzysztof kkcwalina@eti.pg.edu.pl	PL	holin
4	Czylwik, Andreas czylwik@nts.uni-duisburg-essen.de	DE	A.S.
5	Deruyck, Margot margot.deruyck@ugent.be	BE	
6	Dittmann, Lars ld@com.dtu.dk	DK	
7	Ekman, Torbjörn torbjorn.ekman@ntnu.no	NO	
8	Gaillot, Davy davy.gaillot@univ-lille.fr	FR	The state of the s
9	Garcia-Pardo, Concepcion cgpardo@iteam.upv.es	ES	
)	Gardasevic, Gordana gordana.gardasevic@etf.unibl.org	ВА	
1	Haddad, Yoram haddad@g.jct.ac.il	IL	
2	Haneda, Katsuyuki katsuyuki.haneda@aalto.fi	FI	
3	Horvath, Balint horvath.balint@vik.bme.hu	HU	
ļ	Hristov, Atanas atanas.hristov@uist.edu.mk	MK	
i	Ivashina, Marianna marianna.ivashina@chalmers.se	SE	
;	Katzis, Konstantinos K.Katzis@euc.ac.cy	CY	Mil

This information is collected for the purpose of checking etgibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice by e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and envergency services.

Management Committee -	Management C	ommittee Meetin	g (Start Date: 202	23-05-23 End Date	2023-05-25)

Nr	Participant	Country	Signature
27	Kocan, Enis enisk@ucg.ac.me	ME	
28	Kułakowski, Paweł kulakowski@agh.edu.pl	PL	
29	Kürner, Thomas kuerner@ifn.ing.tu-bs.de	DE	
30	Lager, Ioan Ernest i.e.lager@tudelft.nl	NL	
31	Lagunas, Eva eva.lagunas@uni.lu	LU	
32	Lehne, Per Hjalmar per-hjalmar.lehne@telenor.com	NO	Pary bela
33	Liotou, Eirini eirini.liotou@iccs.gr	EL	/
34	Lipovac, Adriana adriana.lipovac@unidu.hr	HR	Africa
35	Machaj, Juraj juraj.machaj@feit.uniza.sk	SK	
36	Marsalek, Roman marsaler@vut.cz	CZ	Marle
37	Mikhaylov, Konstantin konstantin.mikhaylov@oulu.fi	FI	
38	Mlinar, Tomi tomi.mlinar@fe.uni-lj.si	SI	alla.
39	Molina-Garcia-Pardo, Jose-Maria josemaria.molina@upct.es	ES	
40	Oestges, Claude claude.oestges@uclouvain.be	BE	Com
41	Ortiz, Flor flor.ortiz@uni.lu	LU	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our logal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

	nagement Committee - Management Comm		nt Date: 2023-05-23 End Date: 2023-05-25)
•	Participant	Country	Signature
2	Ozdemir, Mehmet Kemal mkozdemir@medipol.edu.tr	TR	
,	Papaj, Ján jan.papaj@tuke.sk	SK	
	Pedersen, Troels troels@es.aau.dk	DK	
5	Pejanovic-Djurisic, Milica milica@ucg.ac.me	ME	dry ji
6	Rainer, Benjamin benjamin.rainer@ait.ac.at	AT	
7	Salous, Sana sana.salous@durham.ac.uk	UK	Salpro
}	Saratti, Flaminia flaminia.saratti@unibo.it	IT C	Jean Soh
)	Sarrazin, Julien julien.sarrazin@sorbonne-universite.fr	FR	
)	Skachek, Vitaly vitaly.skachek@gmail.com	EE	
1	Skrivervik, Anja anja.skrivervik@epfl.ch	СН	
2	Stojkoska, Biljana biljanastojkoska@yahoo.com	MK	
3	Sykora, Jan jan.sykora@fel.cvut.cz	CZ	E/4
1	Timcenko, Valentina valentina.timcenko@pupin.rs	RS	Burn
5	Vassiliou, Vasos vasosv@ucy.ac.cy	CY	
3	VELEZ, Fernando José fjv@ubi.pt	PT	John

This information is collected for the purpose of checking eligibility for seimbursement of your expenses under the COST Amotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgien Isw. It will be kept for the duration of COST audit obligations as mentioned in the privacy natice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

Participant	Country	Signature
Verdone, Roberto roberto.verdone@unibo.it	ΙΤ	
Villemaud, Guillaume guillaume.villemaud@insa-lyon.fr	FR	
Wagen, Jean Frederic jfowagen@gmail.com	СН	Dre
Wilding, Thomas thomas.wilding@tugraz.at	AT Thom	-s hy
Zammit, Joseph A. joseph.a.zammit@mcast.edu.mt	MT	
Zanaj, Elma ezanaj@fti.edu.al	AL	
Zentner, Radovan radovan.zentner@fer.hr	HR	
Zhang, Haibin haibin.zhang@tno.nl	NL	1. Theren
CAVALUEIO SARA	Son	e Caubles
Your		
JaniA VOB		
CARDONA, NARCIS	ES	Ale

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian Law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Meeting Secretary

(Chair or local organiser)

Name + signature

Meeting Administrator: Flaminia Saratti

This information is collected for the purpose of checking eigibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the ineeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law if will be kept for the duration of COST audit obligations as mentioned in the privacy notes for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landiced of the premises and emergency services.

MEETING ATTENDANCE LIST (MANAGEMENT COMMITTEE MEETING - 2023-05-24)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65

Action Number: CA20120

E-mail: flaminia.saratti@unibo.it

Man	agement Committee - Management Comm	ittee Meeting (St	art Date: 2023-05-23 End Date: 2023-05-25)
Nr	Participant	Country	Signature
1	Aleksiejūnas, Rimvydas rimvydas.aleksiejunas@ff.vu.lt	LT	Albo-
2	ARSLAN, Hüseyin arslan.usf@gmail.com	TR	H. AISM
3	Bajić, Dragana dragana.bajic@gmail.com	RS	Sklynt
4	Berbakov, Lazar lazar.berbakov@pupin.rs	RS	
5	Bota, Vasile Vasile.Bota@com.utcluj.ro	RO	Vanto
6	Brennan, Conor conor.brennan@dcu.ìe	IE	
7	Buratti, Chiara c.buratti@unibo.it	IT	
8	Burr, Alister alister.burr@york.ac.uk	UK	Old Bron
9	Chatzimisios, Periklis pchatzimisios@ihu.gr	EL	
10	Chatzinotas, Symeon schatzin@ieee.org	LU	
11	Clavier, Laurent laurent.clavier@imt-nord-europe.fr	FR	Lich

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the needing takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

٧r	Participant	Country	Signature
12	Correia, Luis M luis.m.correia@tecnico.ulisboa.pt	PT	ansun
13	Cwalina, Krzysztof kkcwalina@eti.pg.edu.pl	PL	Klishin
4	Czylwik, Andreas czylwik@nts.uni-duisburg-essen.de	DE	A-SP
5	Deruyck, Margot margot.deruyck@ugent.be	BE	dr
6	Dittmann, Lars ld@com.dtu.dk	DK	
7	Ekman, Torbjörn torbjorn.ekman@ntnu.no	NO	٨
8	Gaillot, Davy davy.gaillot@univ-lille.fr	FR	
9	Garcia-Pardo, Concepcion cgpardo@iteam.upv.es	ES	
0	Gardasevic, Gordana gordana.gardasevic@etf.unibl.org	ВА	
1	Haddad, Yoram haddad@g.jct.ac.il	IL	
2	Haneda, Katsuyuki katsuyuki.haneda@aalto.fi	FI	
3	Horvath, Balint horvath.balint@vik.bme.hu	HU	
4	Hristov, Atanas atanas.hristov@uist.edu.mk	MK	
5	Ivashina, Marianna marianna.ivashina@chalmers.se	SE	
6	Katzis, Konstantinos K.Katzis@euc.ac.cy	CY	Bent

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian faw. If will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

٧r	Participant	Country	Signature
27	Kocan, Enis enisk@ucg.ac.me	ME	
28	Kułakowski, Paweł kulakowski@agh.edu.pl	PL	A'
29	Kürner, Thomas kuerner@ifn.ing.tu-bs.de	DE	
80	Lager, loan Ernest i.e.lager@tudelft.nl	NL	
11	Lagunas, Eva eva.lagunas@uni.lu	LU	
2	Lehne, Per Hjalmar per-hjalmar.lehne@telenor.com	NO	Res Fralen Lola
3	Liotou, Eirini eirini.liotou@iccs.gr	EL	
34	Lipovac, Adriana adriana.lipovac@unidu.hr	HR	Alpioc
5	Machaj, Juraj juraj.machaj@feit.uniza.sk	SK	,
6	Marsalek, Roman marsaler@vut.cz	CZ	han
7	Mikhaylov, Konstantin konstantin.mikhaylov@oulu.fi	FI	
8	Mlinar, Tomi tomi.mlinar@fe.uni-lj.si	SI	Man.
9	Molina-Garcia-Pardo, Jose-Maria josemaria.molina@upct.es	ES -	
0	Oestges, Claude claude.oestges@uclouvain.be	BE	LAAL .
1	Ortiz, Flor flor.ortiz@uni.lu	LU	

This information is collected for the purpose of checking alligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Papaj, Ján jan.papaj@tuke.sk S Pedersen Troels	FR SK
jan.papaj@tuke.sk Pedersen, Troels	
	PK
Pejanovic-Djurisic, Milica milica@ucg.ac.me M	IE My Lin
Rainer, Benjamin benjamin.rainer@ait.ac.at A	т
Salous, Sana sana.salous@durham.ac.uk	K Salam
Saratti, Flaminia flaminia.saratti@unibo.it	ges Sin
Sarrazin, Julien julien.sarrazin@sorbonne-universite.fr	R
Skachek, Vitaly vitaly.skachek@gmail.com	E
Skrivervik, Anja anja.skrivervik@epfl.ch	Н
Stojkoska, Biljana biljanastojkoska@yahoo.com	K
Sykora, Jan jan.sykora@fel.cvut.cz	z 34
Timcenko, Valentina valentina.timcenko@pupin.rs	5 thin
Vassiliou, Vasos vasosv@ucy.ac.cy	Y
VELEZ, Fernando José fjv@ubi.pt	r Jwyling

This information is collected for the purpose of checking eligibility for reinformement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landood of the premises and emergency services.

Mar	agement Committee - Management Committee	e Meeting (S	start Date: 2023-05-23 End Date: 2023-05-25)
Nr	Participant	Country	Signature
57	Verdone, Roberto roberto.verdone@unibo.it	IT	
58	Villemaud, Guillaume guillaume.villemaud@insa-lyon.fr	FR	
59	Wagen, Jean Frederic jfowagen@gmail.com	СН	They
60	Wilding, Thomas thomas.wilding@tugraz.at	АТ	Thomas by
61	Zammit, Joseph A. joseph.a.zammit@mcast.edu.mt	MT	
62	Zanaj, Elma ezanaj@fti.edu.al	AL	
63	Zentner, Radovan radovan.zentner@fer.hr	HR	
64	Zhang, Haibin haibin.zhang@tno.nl	NL	y. Zhang
65	CARDONA, NARCIS	45	
66	CAJALLERO SARA CNIT	IT	Jone Couples
67			
68			
69			

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian iaw. It will be kept for the duration of COST audit obligations as monitoned in the privacy notice for e-COST it won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Meeting Secretary

(Chair or local organiser)

Name + signature

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Pules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. If will be kept for this duration of COST audit obligations as mentioned in the privacy nonce for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

MEETING ATTENDANCE LIST (MANAGEMENT COMMITTEE MEETING - 2023-05-25)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65

Meeting Administrator: Flaminia Saratti

E-mail: flaminia.saratti@unibo.it

Management Committee - Management Committee Meeting (Start Date: 2023-05-23 End Date: 2023-05-25) Nr **Participant** Country Signature Aleksiejūnas, Rimvydas LT rimvydas.aleksiejunas@ff.vu.lt ARSLAN, Hüseyin 2 TR arslan.usf@gmail.com Bajić, Dragana 3 RS dragana.bajic@gmail.com Berbakov, Lazar 4 RS lazar.berbakov@pupin.rs Bota, Vasile 5 RO Vasile.Bota@com.utcluj.ro Brennan, Conor 6 IE conor.brennan@dcu.ie Buratti, Chiara 7 IT c.buratti@unibo.it Burr. Alister 8 UK alister.burr@york.ac.uk Chatzimisios, Periklis 9 EL pchatzimisios@ihu.gr Chatzinotas, Symeon 10 LU schatzin@ieee.org LI a Clavier, Laurent 11 FR laurent.clavier@imt-nord-europe.fr

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgien law. If will be kept for the duration of COST audit obligations as mentioned in the previous number for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services:

۱r	Participant	Country	Signature
12	Correia, Luis M luis.m.correia@tecnico.ulisboa.pt	PT	Curba
3	Cwalina, Krzysztof kkcwalina@eti.pg.edu.pl	PL	Contin
4	Czylwik, Andreas czylwik@nts.uni-duisburg-essen.de	DE	$A_{\mathcal{A}}$
5	Deruyck, Margot margot.deruyck@ugent.be	BE	Ar
6	Dittmann, Lars ld@com.dtu.dk	DK	
7	Ekman, Torbjörn torbjorn.ekman@ntnu.no	NO	
8	Gaillot, Davy davy.gaillot@univ-lille.fr	FR	Alle
9	Garcia-Pardo, Concepcion cgpardo@iteam.upv.es	ES	
)	Gardasevic, Gordana gordana.gardasevic@etf.unibl.org	ВА	
1	Haddad, Yoram haddad@g.jct.ac.il	IL	
2	Haneda, Katsuyuki katsuyuki.haneda@aalto.fi	FI	
3	Horvath, Balint horvath.balint@vik.bme.hu	HU	
1	Hristov, Atanas atanas.hristov@uist.edu.mk	MK	(Jan
5	Ivashina, Marianna marianna.ivashina@chalmers.se	SE	
3	Katzis, Konstantinos K.Katzis@euc.ac.cy	CY	alen

This information is collected for the purpose of checking eligibility for reinhursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian taw, if will be kept for the curation of COST audit obligations as mentioned in the privacy notice for e-COST. If won't be transferred to any third party except in case of usu for safety purposes where it will be transferred to the landlord of the premises and emergency services.

r	Participant	Country	Signature
7	Kocan, Enis enisk@ucg.ac.me	ME	
8	Kułakowski, Paweł kulakowski@agh.edu.pl	PL	Ph:
9	Kürner, Thomas kuerner@ifn.ing.tu-bs.de	DE	
0	Lager, loan Ernest i.e.lager@tudelft.nl	NL	
1	Lagunas, Eva eva.lagunas@uni.lu	LU	
2	Lehne, Per Hjalmar per-hjalmar.lehne@telenor.com	NO	
3	Liotou, Eirini eirini.liotou@iccs.gr	EL	
4	Lipovac, Adriana adriana.lipovac@unidu.hr	HR	Agino
5	Machaj, Juraj juraj.machaj@feit.uniza.sk	SK	
6	Marsalek, Roman marsaler@vut.cz	CZ	hove
7	Mikhaylov, Konstantin konstantin.mikhaylov@oulu.fi	FI	
3	Mlinar, Tomi tomi.mlinar@fe.uni-lj.si	SI	Ma.
9	Molina-Garcia-Pardo, Jose-Maria josemaria.molina@upct.es	ES	
)	Oestges, Claude claude.oestges@uclouvain.be	BE	CAM
ı	Ortiz, Flor flor.ortiz@uni.lu	LU	
			*

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian faw. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST, it won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services:

ł٢	Participant	Country	Signature
12	Ozdemir, Mehmet Kemal mkozdemir@medipol.edu.tr	TR	
43	Papaj, Ján jan.papaj@tuke.sk	SK	
14	Pedersen, Troels troels@es.aau.dk	DK	
1 5	Pejanovic-Djurisic, Milica milica@ucg.ac.me	ME	illy Li
16	Rainer, Benjamin benjamin.rainer@ait.ac.at	АТ	
17	Salous, Sana sana.salous@durham.ac.uk	UK	
18	Saratti, Flaminia flaminia.saratti@unibo.it	IT &	1Con Sol
.9	Sarrazin, Julien julien.sarrazin@sorbonne-universite.fr	FR	
0	Skachek, Vitaly vitaly.skachek@gmail.com	EE	
1	Skrivervik, Anja anja.skrivervik@epfl.ch	СН	
2	Stojkoska, Biljana biljanastojkoska@yahoo.com	MK	
3	Sykora, Jan jan.sykora@fel.cvut.cz	CZ	5/60
4	Timcenko, Valentina valentina.timcenko@pupin.rs	RS	Ello Kyrn
5	Vassiliou, Vasos vasosv@ucy.ac.cy	CY	
6	VELEZ, Fernando José fjv@ubi.pt	PT	Malen
	T		/

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the CQST Appointed-Rules-for-CQST-Actions-Level-C and, when the meeting takes place in CQST premises, for safety purposes in compliance with our legal obligations under Belgian law. If will be Kept for the duration of CQST audit obligations as mentioned in the privacy notice for e-CQST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the granises and emergency services.

lr	Participant	Country	Signature
7	Verdone, Roberto roberto.verdone@unibo.it	ΙΤ	
8	Villemaud, Guillaume guillaume.villemaud@insa-lyon.fr	FR	
9	Wagen, Jean Frederic jfowagen@gmail.com	СН	Valj
0	Wilding, Thomas thomas.wilding@tugraz.at	AT Thom	os Ly
1	Zammit, Joseph A. joseph.a.zammit@mcast.edu.mt	MT	
2	Zanaj, Elma ezanaj@fti.edu.al	AL	
3	Zentner, Radovan radovan.zentner@fer.hr	HR	
4	Zhang, Haibin haibin.zhang@tno.nl	NL Y	1 sharf
5			
6			
7			
3			
)			

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).



This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-E and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Meeting Secretary

(Chair or local organiser)

Name + signature



This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian faw. It will be kept for the duration of COST audit obligations as mentioned in the privacy powde for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

MEETING ATTENDANCE LIST (WORKING GROUP MEETING - 2023-05-23)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Me	eting Reference: E-COST-MEETING-CA201	20-230523-2fc26c65	Action Number: CA20120
/le	eting Administrator: Flaminia Saratti		E-mail: flaminia.saratti@unibo.i
Vo	rking Group - Working Group Meeting (Sta	rt Date: 2023-05-23 E	End Date: 2023-05-25)
lr	Participant	Country	Signature
	Agustin, Adrian adrian.agustin@cttc.cat	ES 🧲	
	ahmadi, hamed hamed.ahmadi@ucd.ie	UK	
	Ali, Mohsin engineermohsinali@gmail.com	PK	
	Amay, Marc Jovan marc.amay@cttc.es	ES	Jem C
	Anton-Haro, Carles carles.anton@cttc.es	ES	ANISS
	Bas, Joan joan.bas@cttc.es	ES	
	Blazek, Thomas thomas.blazek@silicon-austria.com	АТ	
	Boban, Mate mate.boban@huawei.com	DE	
	Brown, Tim t.brown@surrey.ac.uk	uĸ	
)	Cichoń, Krzysztof krzysztof.cichon@put.poznan.pl	PL	Chi
	Conserva, Francesca francesca.conserva@unibo.it	ΙΤ	Stan Can

This information is collected for the purpose of checking eliquitity for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our logal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landtord of the premises and emergency services.

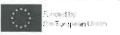
٧r	Participant	Country	Signature
12	Csatho, Botond Tamas csatho.botond@edu.bme.hu	HU	
13	Czapiewska, Agnieszka agnieszka.czapiewska@pg.edu.pl	PL	Chapriershe
14	d'Orey, Pedro pdorey@fe.up.pt	PT	
5	Dakic, Anja anja.dakic@ait.ac.at	AT	2 mart Aba
6	Das, Kallol kallol.das@tno.nl	NL	Jonat Aba
7	De Saint Moulin, François francois.desaintmoulin@uclouvain.be	BE	2-30
8	Degli-Esposti, Vittorio v.degliesposti@unibo.it	ΙΤ	
9	Di Renzo, Marco marco.di-renzo@universite-paris-saclay.fr	FR	
0	Drozdowska, Monika mdrozdo@upv.edu.es	ES	M. Diordonsler
1	Dupleich, Diego diego-andres.dupleich@tu-ilmenau.de	DE	M. Drondorsten Lyo Lyn
2	Ebert, Alexander alexander.ebert@tu-ilmenau.de	DE	
3	Fan, Wei wfa@es.aau.dk	DK	表集
4	Fontanesi, Gianluca fontanesi.gianluca@outlook.com	LU	
5	Fuchs, Andreas afuchs@tugraz.at	АТ	· II
6	Garcia Armada, Ana agarcia@tsc.uc3m.es	ES	M

This information is collected for the purpose of checking alighbity for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the ineeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and entergency services.

Woı	rking Group - Working Group Meeting (Start D	ate: 2023-05	-23 End Date: 2023-05-25)
Nr	Participant	Country	Signature
27	Ghiaasi, Golsa golsa.ghiaasi@silicon-austria.com	AT	9-
28	Gijon Martin, Carolina cgm@ic.uma.es	ES	COS
29	Guan, Ke kguan@bjtu.edu.cn	CN	(Ce.Com
30	Hannotier, Cédric cedric.hannotier@ulb.be	BE	
31	Hofer, Markus markus.hofer@ait.ac.at	АТ	
32	Iradier, Eneko eneko.iradier@ehu.eus	ES	E-Jsac
33	Joseph, Wout wout.joseph@ugent.be	BE	
34	Kang, CheChia kang.c.aa@m.titech.ac.jp	JP	CHECHIA KANG.
35	Keerativoranan, Nopphon nopphon.keerativoranan@ap.ide.titech.ac.jp	JP	KEERATIVORANAN NOPPIAON
36	Kliks, Adrian adrian.kliks@put.poznan.pl	PL	
37	Kodra, Silvi silvi.kodra2@unibo.it	IT	SWY.
38	Kokkoniemi, Joonas joonas.kokkoniemi@oulu.fi	FI	
39	Larsson, Christina christina.c.larsson@ericsson.com	SE	Chih
40	Linsalata, Francesco francesco.linsalata@polimì.it	ΙΤ	Fryhole
1 1	Lozano, Angel angel.lozano@upf.edu	n/a	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rutes-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our fegal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

r	Participant	Country	Signature
2	Magarini, Maurizio maurizio.magarini@polimi.it	ΙT	
;	Mallik, Mohammed mohammed.mallik.etu@univ-lille.fr	FR	Ludis
	Manzoor, Hira hira.manzoor@pg.edu.pl	PL	
	Maret, Yann yann.maret@hefr.ch	СН	Mafre
	Martin-Vega, Francisco J. fjmvega@ic.uma.es	ES	•
	Medda, Daniele dmedda@ihu.edu.gr	EL	Dorbe Kullen
	Méndez-Monsanto Suárez, Lianet 100384026@alumnos.uc3m.es	EŞ	Log.
	Mestre, Xavier xavier.mestre@cttc.cat	ES	
	Miao, Yang y.miao@utwente.nl	NL	ANT 100
	Muzaffar, Raheeb raheeb.muzaffar@silicon-austria.com	AT	AST 1
	Navarro, Andres anavarro@icesi.edu.co	CO	Odravain (
	NGOM, Mamadou grandngom606@gmail.com	FR	dd A
	Ninkovic, Vukan ninkovic@uns.ac.rs	RS	R
	Orozco, Luis luis.orozco@uclm.es	ES	
	Otero Martinez, Javier jotero@tsc.uc3m.es	ES	Alexen .



This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgium law. If will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)

Nr	Participant	Country	Signature
57	Pasic, Faruk faruk.pasic@tuwien.ac.at	АТ	Fanely.
58	Peschiera, Emanuele emanuele.peschiera@kuleuven.be	BE	lille
59	Plets, David david.plets@ugent.be	BE	
60	Radovic, Danilo danilo.radovic@tuwien.ac.at	AT	Danib
61	Radpour, Hamed radpour.hamed@gmail.com	АТ	Hend
62	Raja Kumar, Dheeraj drajakumar@cttc.es	ES	Jan
63	Rajchowski, Piotr piorajch@eti.pg.edu.pl	PL	Rex
64	Reig, Juan jreigp@dcom.upv.es	ES	Jan Je
65	Rudd, Richard richard.rudd@plumconsulting.co.uk	UK	Holy Shell
66	Ruiz Boqué, Silvia silvia.ruiz@upc.edu	ES	THE
67	Rumney, Moray moray@rumneytelecom.com	UK	
68	Samara, Lutfi lutfiz.samara@huawei.com	CN	Liter
69	Sayrafian, Kamran kamran.sayrafian@nist.gov	us	A sopp
70	Schiffarth, Anna-Malin schiffarth@ihf.rwth-aachen.de	DE	Sirpur
71	Schneider, Christian christian.schneider@tu-ilmenau.de	DE	(=)

This Information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST, it won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

r	Participant	Country	Signature
	Shah, Syed Najaf Haider syed-najaf-haider.shah@tu-ilmenau.de	DE	Day!
	Skocaj, Marco marco.skocaj@unibo.it	IT	Moreon Mit
	Skoric, Tamara tamara.ceranic@gmail.com	RS	Mucont
	Skos, Krzysztof krzysztof.skos@gmail.com	PL	,
	Smeenk, Carsten carsten.smeenk@iis.fraunhofer.de	DE	
	Sommerkorn, Gerd som@tu-ilmenau.de	DE	fren
	Spagnolini, Umberto Umberto.Spagnolini@polimi.it	ΙΤ	M Spepwell
	Steinboeck, Gerhard Gerhard.steinbock@ericsson.com	SE	
	Taramit, Hamid hamid.taramit@alu.uclm.es	ES	Jan
	TESFAY, Angesom angesom.tesfay@imt-nord-europe.fr	FR	
	Thomä, Reiner reiner.thomae@tu-ilmenau.de	DE	2 Th
	Tonyali, Samet samettonyali29@gmail.com	TR	
	Torres, Renato rbtorres93@gmail.com	ES	
	Torrico, Saul storrico@gwu.edu	US	Donl
	Vitucci, Enrico Maria enricomaria.vitucci@unibo.it	IT	Your M. This

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian Inw. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

	king Group - Working Group Meeting (S	tart Date: 2023-05-2	3 End Date: 2023-05-25)
Nr	Participant	Country	Signature
87	Witrisal, Klaus witrisal@tugraz.at	AT	Jhe
88	Yuan, Zhiqiang zhyu@es.aau.dk	DK	Zhiqing Yuan
89	Zhang, Peize peize.zhang@oulu.fi	FI	
90	Ziganshin, Ainur ainur.ziganshin@tu-ilmenau.de	DE	3
91	CARDONA, NARCIS ncordona a upv.es	85	
92			
93			
94			
95			

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

Meeting Secretary

(Chair or local organiser)

Name + signature

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

MEETING ATTENDANCE LIST (WORKING GROUP MEETING - 2023-05-24)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65

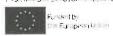
Action Number: CA20120

Meeting Administrator: Flaminia Saratti E-mail: flaminia.saratti@unibo.it

Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25) Nr **Participant** Country Signature Agustin, Adrian 1 ES adrian.agustin@cttc.cat ahmadi, hamed 2 UK hamed.ahmadi@ucd.ie Ali, Mohsin 3 PΚ engineermohsinali@gmail.com Amay, Marc Jovan 4 ES marc.amay@cttc.es Anton-Haro, Carles 5 ES carles.anton@cttc.es Bas, Joan 6 ES joan.bas@cttc.es Blazek, Thomas 7 AT thomas.blazek@silicon-austria.com Boban, Mate 8 DE mate.boban@huawei.com Brown, Tim 9 UK t.brown@surrey.ac.uk Cichoń, Krzysztof 10 PL krzysztof.cichon@put.poznan.pl Conserva, Francesca 11 IT francesca.conserva@unibo.it

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated Rules-for-COST Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law the will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)


Nr	Participant	Country	Signature
12	Csatho, Botond Tamas csatho.botond@edu.bme.hu	HU	
13	Czapiewska, Agnieszka agnieszka.czapiewska@pg.edu.pl	PL	Caprievola
14	d'Orey, Pedro pdorey@fe.up.pt	PT	· ·
15	Dakic, Anja anja.dakic@ait.ac.at	AT	2 ant Atter
16	Das, Kallol kallol.das@tno.nl	NL	100m
17	De Saint Moulin, François francois.desaintmoulin@uclouvain.be	BE	7-35
18	Degli-Esposti, Vittorio v.degliesposti@unibo.it	ΙΤ	
19	Di Renzo, Marco marco.di-renzo@universite-paris-saclay.fr	FR	
20	Drozdowska, Monika mdrozdo@upv.edu.es	ES	M. Drordonsky
21	Dupleich, Diego diego-andres.dupleich@tu-ilmenau.de	DE	M. Drordonsh
22	Ebert, Alexander alexander.ebert@tu-ilmenau.de	DE	
23	Fan, Wei wfa@es.aau.dk	DK	the Management of the Manageme
24	Fontanesi, Gianluca fontanesi.gianluca@outlook.com	LU	
25	Fuchs, Andreas afuchs@tugraz.at	AT	as
26	Garcia Armada, Ana agarcia@tsc.uc3m.es	ES	As I was a second of the secon

This Information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian taw. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Nr	Participant	Country	Signature
27	Ghiaasi, Golsa golsa.ghiaasi@silicon-austria.com	AT	4
28	Gijon Martin, Carolina cgm@ic.uma.es	ES	Cover
29	Guan, Ke kguan@bjtu.edu.cn	CN	
30	Hannotier, Cédric cedric.hannotier@ulb.be	BE	
31	Hofer, Markus markus.hofer@ait.ac.at	АТ	
32	Iradier, Eneko eneko.iradier@ehu.eus	ES	E-Jade
3	Joseph, Wout wout.joseph@ugent.be	BE	
4	Kang, CheChia kang.c.aa@m.titech.ac.jp	JP	CHECHIA KANG.
15	Keerativoranan, Nopphon nopphon.keerativoranan@ap.ide.titech.ac.jp	JP	MECHIA KANG.
16	Kliks, Adrian adrian.kliks@put.poznan.pl	PL	
7	Kodra, Silvi silvi.kodra2@unibo.it	II.	Sput.
8	Kokkoniemi, Joonas joonas.kokkoniemi@oulu.fi	FI	
9	Larsson, Christina christina.c.larsson@ericsson.com	SE	Chuh
0	Linsalata, Francesco francesco.linsalata@polimi.it	ΙΤ	En Com
1	Lozano, Angel angel.lozano@upf.edu	n/a	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-Ine-COST-Actions-Level-C and, when the ineeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian Jaw, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. If won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Woi	rking Group - Working Group Meeting (Start D	ate: 2023-0	5-23 End Date: 2023-05-25)
Nr	Participant	Country	Signature
42	Magarini, Maurizio maurizio.magarini@polimi.it	ΙΤ	Man llf
43	Mallik, Mohammed mohammed.mallik.etu@univ-liile.fr	FR	Marth
44	Manzoor, Hira hira.manzoor@pg.edu.pl	PL	
45	Maret, Yann yann.maret@hefr.ch	СН	Morpe
46	Martin-Vega, Francisco J. fjmvega@ic.uma.es	ES	•
47	Medda, Daniele dmedda@ihu.edu.gr	EL	Dorl Kun
48	Méndez-Monsanto Suárez, Lianet 100384026@alumnos.uc3m.es	ES	star.
19	Mestre, Xavier xavier.mestre@cttc.cat	ES	
50	Miao, Yang y.miao@utwente.nl	NL	mroo
51	Muzaffar, Raheeb raheeb.muzaffar@silicon-austria.com	АТ	N 804-
52	Navarro, Andres anavarro@icesi.edu.co	со	Mayar C
53	NGOM, Mamadou grandngom606@gmail.com	FR	Mot
54	Ninkovic, Vukan ninkovic@uns.ac.rs	RS	B. #
5	Orozco, Luis luis.orozco@uclm.es	ES	
6	Otero Martinez, Javier jotero@tsc.uc3m.es	ES	and Otaso

This information is collected for the purpose of checking eligibility for raimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third perty except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

۱r	Participant	Country	Signature
7	Pasic, Faruk faruk.pasic@tuwien.ac.at	АТ	Farth
	Peschiera, Emanuele emanuele.peschiera@kuleuven.be	BE	M
	Plets, David david.plets@ugent.be	BE	
	Radovic, Danilo danilo.radovic@tuwien.ac.at	AT	Jane
	Radpour, Hamed radpour.hamed@gmail.com	AT /	1.0
	Raja Kumar, Dheeraj drajakumar@cttc.es	ES	Jul
	Rajchowski, Piotr piorajch@eti.pg.edu.pl	PL	Richai
	Reig, Juan jreigp@dcom.upv.es	ES	· · · · · · · · · · · · · · · · · · ·
	Rudd, Richard richard.rudd@plumconsulting.co.uk	UK	higher had
	Ruiz Boqué, Silvia silvia.ruiz@upc.edu	ES	4
	Rumney, Moray moray@rumneytelecom.com	UK	
	Samara, Lutfi lutfiz.samara@huawei.com	CN A	
	Sayrafian, Kamran kamran.sayrafian@nist.gov	us A.	skyland
	Schiffarth, Anna-Malin schiffarth@ihf.rwth-aachen.de	DE	~ fr
	Schneider, Christian christian.schneider@tu-ilmenau.de	DE C	9

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgium law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

Woi Nr	rking Group - Working Group Meeting (Start Participant	t Date: 2023-0: Country	
72	Shah, Syed Najaf Haider syed-najaf-haider.shah@tu-ilmenau.de	DE	Signature
73	Skocaj, Marco marco.skocaj@unibo.it	ΙΤ	Morec They
' 4	Skoric, Tamara tamara.ceranic@gmail.com	RS	Flywork I
'5	Skos, Krzysztof krzysztof.skos@gmail.com	PL	
6	Smeenk, Carsten carsten.smeenk@iis.fraunhofer.de	DE	C Squif
7	Sommerkorn, Gerd som@tu-ilmenau.de	DE	
8	Spagnolini, Umberto Umberto.Spagnolini@polimi.it	ΙΤ	In Maguely
9	Steinboeck, Gerhard Gerhard.steinbock@ericsson.com	SE	
0	Taramit, Hamid hamid.taramit@alu.uclm.es	ES	Harm
1	TESFAY, Angesom angesom.tesfay@imt-nord-europe.fr	FR	
2	Thomä, Reiner reiner.thomae@tu-ilmenau.de	DE	R
3	Tonyali, Samet samettonyali29@gmail.com	TR	
1	Torres, Renato rbtorres93@gmail.com	ES	
5	Torrico, Saul storrico@gwu.edu	US	
3	Vitucci, Enrico Maria enricomaria.vitucci@unibo.it	IT	Ticollailile

This information is collected for the purpose of checking eligibility for remibursement, of your expenses under the COST-Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST precises, for safety purposes in combinate with our lagal obligations under Selgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landford of the premises and emergency services.

Wor	Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)					
Nr	Participant	Country	Signature			
87	Witrisal, Klaus witrisal@tugraz.at	AT	Mal			
88	Yuan, Zhiqiang zhyu@es.aau.dk	DK	Mul Zhoefen Ymm			
89	Zhang, Peize peize.zhang@oulu.fi	FI	·			
90	Ziganshin, Ainur ainur.ziganshin@tu-ilmenau.de	DE				
91	thomas wilding @ thegrazeat Norcis Cardona	AT	Thomas W			
92	Narcis Cardona Nardona @ Upv. es	ES	She			
93	· ·					
94						
95						

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

Meeting Secretary

(Chair or local organiser)

Name + signature

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for COST. Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as creationed to the privacy notice for e-COST, it want be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

MEETING ATTENDANCE LIST (WORKING GROUP MEETING - 2023-05-25)

The attendance list provides the names of the participants who confirmed attendance via their personal e-COST invitation link.

Meeting Title: 5th MC and Technical Meeting

Meeting Reference: E-COST-MEETING-CA20120-230523-2fc26c65

Meeting Administrator: Flaminia Saratti

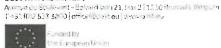
E-mail: flaminia.saratti@unibo.it

E-mail: flaminia.saratti@unibo.it Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25) Nr **Participant** Country Signature Agustin, Adrian 1 ES adrian.agustin@cttc.cat ahmadi, hamed 2 UK hamed.ahmadi@ucd.ie Ali, Mohsin 3 PK engineermohsinali@gmail.com Amay, Marc Jovan 4 ES marc.amay@cttc.es Anton-Haro, Carles 5 ES carles.anton@cttc.es Bas, Joan 6 ES joan.bas@cttc.es Blazek, Thomas 7 AT thomas.blazek@silicon-austria.com Boban, Mate 8 DE mate.boban@huawei.com Brown, Tim 9 UK t.brown@surrey.ac.uk Cichoń, Krzysztof 10 PL krzysztof.cichon@put.poznan.pl Conserva, Francesca 11 IT francesca.conserva@unibo.it

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our tegal obligations under Belgian law. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Woı	Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)				
Nr	Participant	Country	Signature		
12	Csatho, Botond Tamas csatho.botond@edu.bme.hu	HU			
13	Czapiewska, Agnieszka agnieszka.czapiewska@pg.edu.pl	PL	Chapiershe		
14	d'Orey, Pedro pdorey@fe.up.pt	PT			
15	Dakic, Anja anja.dakic@ait.ac.at	AT	2 alast Aba		
16	Das, Kallol kallol.das@tno.nl	NL	Kom_		
17	De Saint Moulin, François francois.desaintmoulin@uclouvain.be	BE	J		
18	Degli-Esposti, Vittorio v.degliesposti@unibo.it	IT			
19	Di Renzo, Marco marco.di-renzo@universite-paris-saclay.fr	FR	v a a		
20	Drozdowska, Monika mdrozdo@upv.edu.es	ES	M. Drorbh		
21	Dupleich, Diego diego-andres.dupleich@tu-ilmenau.de	DE	M. Drorohm		
22	Ebert, Alexander alexander.ebert@tu-ilmenau.de	DE			
23	Fan, Wei wfa@es.aau.dk	DK	- Follows		
24	Fontanesi, Gianluca fontanesi.gianluca@outlook.com	LU			
25	Fuchs, Andreas afuchs@tugraz.at	AT	Tiel		
26	Garcia Armada, Ana agarcia@tsc.uc3m.es	ES			

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian taw, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST, it won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the laudlord of the premises and emergency services.


Nr	Participant	Country	Signature
27	Ghiaasi, Golsa golsa.ghiaasi@silicon-austria.com	АТ	9
28	Gijon Martin, Carolina cgm@ic.uma.es	ES	199
29	Guan, Ke kguan@bjtu.edu.cn	CN	Cetta
30	Hannotier, Cédric cedric.hannotier@ulb.be	BE	
31	Hofer, Markus markus.hofer@ait.ac.at	АТ	
32	Iradier, Eneko eneko.iradier@ehu.eus	ES	t-tradice
33	Joseph, Wout wout.joseph@ugent.be	BE	
4	Kang, CheChia kang.c.aa@m.titech.ac.jp	JP	CHE CHIA YANG
5	Keerativoranan, Nopphon nopphon.keerativoranan@ap.ide.titech.ac.jp	JP	CHE CHIA YANG. Nophu a.
6	Kliks, Adrian adrian.kliks@put.poznan.pl	PL	
7	Kodra, Silvi silvi.kodra2@unibo.it	IT	SWY.
8	Kokkoniemi, Joonas joonas.kokkoniemi@oulu.fi	FI	
9	Larsson, Christina christina.c.larsson@ericsson.com	SE	Chul
)	Linsalata, Francesco francesco.linsalata@polimi.it	ΙT	Form C
1	Lozano, Angel angel.lozano@upf.edu	n/a	

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian taw. It will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for sefety purposes where it will be transferred to the landlord of the premises and emergency services.

Wo	Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)				
Nr	Participant	Country	Signature		
42	Magarini, Maurizio maurizio.magarini@polimi.it	IΤ	Man My.		
43	Mallik, Mohammed mohammed.mallik.etu@univ-lille.fr	FR	land		
44	Manzoor, Hira hira.manzoor@pg.edu.pl	PL			
45	Maret, Yann yann.maret@hefr.ch	СН	Marke		
46	Martin-Vega, Francisco J. fjmvega@ic.uma.es	ES			
47	Medda, Daniele dmedda@ihu.edu.gr	EL	Doll har		
48	Méndez-Monsanto Suárez, Lianet 100384026@alumnos.uc3m.es	ES	Jan .		
49	Mestre, Xavier xavier.mestre@cttc.cat	ES			
50	Miao, Yang y.miao@utwente.nl	NL	M180		
51	Muzaffar, Raheeb raheeb.muzaffar@silicon-austria.com	AT			
52	Navarro, Andres anavarro@icesi.edu.co	СО	Marian C		
53	NGOM, Mamadou grandngom606@gmail.com	FR	dil d		
54	Ninkovic, Vukan ninkovic@uns.ac.rs	RS			
55	Orozco, Luis luis.orozco@uclm.es	ES	Lo		
56	Otero Martinez, Javier jotero@tsc.uc3m.es	ES	Marie Gleso.		

COST Association AISM.

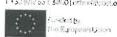
This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law. It will be Kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Working Group - Working Group Meeting (Start Date: 2023-05-23 End Date: 2023-05-25)					
Nr	Participant	Country	Signature		
57	Pasic, Faruk faruk.pasic@tuwien.ac.at	AT	Fandy-		
58	Peschiera, Emanuele emanuele.peschiera@kuleuven.be	BE	lul M		
59	Plets, David david.plets@ugent.be	BE			
30	Radovic, Danilo danilo.radovic@tuwien.ac.at	AT	Dancle		
31	Radpour, Hamed radpour.hamed@gmail.com	АТ	And		
62	Raja Kumar, Dheeraj drajakumar@cttc.es	ES	There		
3	Rajchowski, Piotr piorajch@eti.pg.edu.pl	PL	Rifai		
64	Reig, Juan jreigp@dcom.upv.es	ES			
5	Rudd, Richard richard.rudd@plumconsulting.co.uk	UK	hill Rell		
6	Ruiz Boqué, Silvia silvia.ruiz@upc.edu	ES			
7	Rumney, M oray moray@rumneytelecom.com	UK			
8	Samara, Lutfi lutfiz.samara@huawei.com	CN			
9	Sayrafian, Kamran kamran.sayrafian@nist.gov	US			
0	Schiffarth, Anna-Malin schiffarth@ihf.rwth-aachen.de	DE	Stylen		
1	Schneider, Christian christian.schneider@tu-ilmenau.de	DE			

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST Actions-Level-C and, when the meeting takes place in COST premises, for safety purposes in compliance with our legal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy notice for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.

Ir	Participant	Country	Signature
2	Shah, Syed Najaf Haider syed-najaf-haider.shah@tu-ilmenau.de	DE	Duff
3	Skocaj, Marco marco.skocaj@unibo.it	ΙT	Marco friend
4	Skoric, Tamara tamara.ceranic@gmail.com	RS	51 Yhogats
5	Skos, Krzysztof krzysztof.skos@gmail.com	PL	
6	Smeenk, Carsten carsten.smeenk@iis.fraunhofer.de	DE	Sund
7	Sommerkorn, Gerd som@tu-ilmenau.de	DE	Con
3	Spagnolini, Umberto Umberto.Spagnolini@polimi.it	IT	
)	Steinboeck, Gerhard Gerhard.steinbock@ericsson.com	SE	
)	Taramit, Hamid hamid.taramit@alu.uclm.es	ES	Janout
ı	TESFAY, Angesom angesom.tesfay@imt-nord-europe.fr	FR	
2	Thomä, Reiner reiner.thomae@tu-ilmenau.de	DE	RZ-
}	Tonyali, Samet samettonyali29@gmail.com	TR	
-	Torres, Renato rbtorres93@gmail.com	ES	
	Torrico, Saul storrico@gwu.edu	us	
	Vitucci, Enrico Maria enricomaria.vitucci@unibo.it	IT	Emis Montitland

This information is collected for the purpose of checking eligibility for reimbursement of your expenses under the COST Annotated-Rules-for-COST-Actions-Level-G and, when the meeting takes place in COST premises, for safety purposes in compliance with our tegal obligations under Belgian law, it will be kept for the duration of COST audit obligations as mentioned in the privacy nature for e-COST. It won't be transferred to any third party except in case of use for safety purposes where it will be transferred to the landlord of the premises and emergency services.


Woi	king Group - Working Group Meeting (S	start Date: 2023-05-23 End	Date: 2023-05-25)	
Nr	Participant	Country	Signature	
87	Witrisal, Klaus witrisal@tugraz.at	АТ		
88	Yuan, Zhiqiang zhyu@es.aau.dk	DK	Magne En	
89	Zhang, Peize peize.zhang@oulu.fi	FI	·	
90	Ziganshin, Ainur ainur.ziganshin@tu-ilmenau.de	DE	3	
91				
92				
93				
94				
95				

Country Codes: Albania (AL), Austria (AT), Belgium (BE), Bosnia and Herzegovina (BA), Bulgaria (BG), Croatia (HR), Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary (HU), Iceland (IS), Ireland (IE), Israel (IL), Italy (IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MT), Montenegro (ME), The Netherlands (NL), the North Republic of Macedonia (MK), Norway (NO), Poland (PL), Portugal (PT), The Republic of Moldova (MD), Romania (RO), Serbia (RS), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE), Switzerland (CH), Turkey (TR), United Kingdom (UK).

Meeting Secretary

(Chair or local organiser)

Name + signature

WG Co-Chair Contributions

WG1

During the Barcelona meeting WG1 had

- Three dedicated WG1 sessions, on measurements, modeling, and ray tracing
- Two shared sessions with VT2 on radio channels for vehicular communication
- One shared session with WG2 on performance evaluation
- One shared session with subWG EMF
- One shared session with subWG ISAC
- WG1-sourced keynote on ITU propagation models presented by R. Rudd

As the number of TDs in above session is large (30+), here are some trends we observed:

- The number of channel measurement TDs is increasing, with 10+ papers discussing measurements in mmWave/subTHz, with RIS, for ISAC, very large arrays, etc
- TDs are providing first complete solution for key channel modeling components (path loss, diffraction, RIS modeling)
- Research on vehicular channels remains strong
- Research on ISAC channels starting to pick up speed

In the WG1 discussion session, the following topics were discussed:

- WG1 White Paper: expected to be finished in July
- EuCAP 2024 COST INTERACT Convened Sessions: organizers for COST CS identified, several others announced
- ETSI ISG THz update: constant exchange between ISG-COST proposed
- Two workshops organized and related to WG1, at IEEE Meditcom and IEEE Globecom

WG2

There were 8 papers presented to WG2 alone, plus another 7 in joint sessions with SWG2 on ISAC and 4 jointly with WG1. Topics among the former group included novel codes, SIC for full duplex communications, effect of PA nonlinearities, interference in IoT networks, NOMA, and waveforms for 6G. Several issues of interest to WG2 also arose in the joint WG1 session (which was mainly related to sub-THz systems): notably the need for a realistic mapping function from SINR to rate, considering also relatively short codes, and also so-called "near-field MIMO". In one of the ISAC sessions a discussion arose about what techniques qualify as ISAC – specifically, how integrated do the communications and sensing need to be?

We also had a discussion session jointly with the ISAC SWG, at which we mainly discussed preparations for the White Paper due in June 2024. We discussed potential topics across all three areas (physical layer, localisation, and ISAC), and obtained some volunteers to contribute, but agreed also to request further contributions via the reflector in advance of the next meeting in Poznan. By that meeting we hope to have

largely finalised the list of topics, and enlisted most of the contributors, so that we can have an early draft by the Lisbon meeting.

WG2 - ISAC

In this meeting, we had 8 TDs directly linked to ISAC. The TDs were scheduled in one pure ISAC session and two joint sessions together with localization topics, and channel topics.

In the pure ISAC session, we had very good and important discussions about possible future applications and concerns.

The topics covered by the TDs can be summarized in the following topics:

- Waveform design: OFDM/OTFS
- Time-frequency array/beam Resource allocation
- Possible applications in 5G –NR (blockage prediction)
- Demonstrations of prototype and experiments
- ISAC Channel modeling/reflectivity models

In the Discussion session, we planned the WG2 whitepaper. Regarding ISAC, we agreed to write an ISAC section. We defined subsections based on topics covered in the past TDs. The next steps are to refinement topics and to find volunteers to contribute to the whitepaper. We also have plans for a magazine paper to summarize the ISAC contributions from both WG 1 and WG 2 white papers. Additionally, Yang and I planned to volunteer for the "propagation to ISAC Convened Session" at EuCAP 24 in cooperation with WG1.

VT1

During the INTERACT 5th MC and 5th Technical Meeting the VT1: Health and Well-Being held one session with 4 TDs. There were 12 on-site attendees and 3 on-line attendees. A summary of the presentations and discussion is provided in the following.

I. May 24th (09:00-10:30)

During the session four TDs (no. 4, 9, 41 and 54) were presented. In the first TD (no. 4), several low complexity filtering techniques in gait analysis using depth cameras have been compared. In particular, two algorithms have been selected and compared, in order to decide the most reliable choice for the gait variables extraction with high confidence. The authors concluded that both filtering methods (interpolation and mean average) produce similar results, and both are equally reliable. The second TD (no. 9) presented an overview of the MedSecurance Project: Advanced Security-for-Safety Assurance for Medical Device IoT (MIoT) This is an EU funded project focusing on identifying new challenges in the cyber security of hardware/software-based medical devices, especially in the context of emerging healthcare architectures. In the third TD (no. 41) a narrowband empirical system loss model for body-to-body networks operating at 2.45 GHz in indoor and outdoor environments has been proposed. The influence of the type of environment, antenna visibility and user mobility on the parameters of the model has been investigated. The significant impact of mutual antennas' placement and their visibility has also been shown. The authors of the last TD (no. 54) presented a new localization approach for in-body nano-machines based on magnetic

field. The approach takes advantage of the very good magnetic permeability of all human tissues. The TD describes the proposed localization system, starting from $10x10~\mu m^2$ magnetometers to be integrated into the nano-machines, to a set of external wires generating the magnetic field. The results show a very good system accuracy with localization error even below 1 cm.

II. May 24th (16:00-17:30)

During the second session the VT1 discussion was held. The summary of the discussed topics is provided in the following.

1. Challenges

The challenges have been defined in TD(22)03070 "Technical Challenges in Vertical Team 1: Health & Well-Being" (meeting in Valencia). Five technical challenges have been identified as the baseline for VT1:

- Advanced Communications for Medical Implants, Wearables and Ingestible Implants
- Advanced Telemedicine including Remote Health and activity monitoring for diagnosis or rehabilitation
- Next Generation Technologies for Public Health and Emergencies
- Enhanced Privacy and Security in Health Data and patient safety
- Nano-Networks.

The above list captures the general technical challenges that are under discussion and research by VT1. The TDs that have already been presented by the participants in the past meetings of COST CA20120 are addressing some of the issues under these challenges. The technical topics in VT1 cover a wide spectrum of subjects; therefore, the challenges presented in this document is not meant to be an exhaustive list. Consequently, in the future, the content of this list is expected to evolve as more VT1 participants contribute their research ideas and results to the action and possibly new challenge areas are identified.

- 2. Training schools
- a) Executed
- None
- b) Planned
- None

VT1 members were asked to send information on planned or executed training schools to the VT1 Chairs.

- 3. Short Term Scientific Missions among participant institutions
- a) Executed
- 26-30.09.2022, UPV@PG: "Measurements of the materials' properties (reflection and transmission losses) in classroom and meeting room environments at 26-65 GHz."
- b) Planned
- 2024, **IPS@PG**: Radio channel measurements (including XPD) in public transport vehicles (buses, trams) at mmWaves

VT1 members were asked to send information on planned or executed STSMs to the VT1 Chairs.

- 4. Joint workshops and special sessions
- a) Executed
- None.
- b) Planned
- IoT-Health 2023: 5th International Workshop on IoT Enabling Technologies in Healthcare at IEEE International Conference on Communications, 28 May - 01 June 2023, Rome, Italy; Organizers: Kamran Sayrafian (NIST), Hamed Ahmadi (UOY), Konstantinos Katzis (EUC), Slawomir Ambroziak (PG)
- COST CA20120 INTERACT: Measurement & Modelling of Radio Waves Propagation for Indoor Communications, XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS 2023), August 19 - 26 2023, Sapporo, Japan; Organizers: Slawomir Ambroziak (PG), Kamran Sayrafian (NIST).

VT1 members were asked to send information on planned or executed joint workshops and special sessions to the VT1 Chairs.

- 5. <u>Collaboration</u>
- a) Ongoing
- IST, PG, IPS, RWTH and OULU: "Off-Body and Body-to-Body Radio Channel Modelling at UWB and mmWaves Bands";
- **PG and UPV**: "Measurements of the Channel Impulse Response at mmWaves for Conference Networks".
- **EUC and NIST**: "Remote Monitoring of Physiological Signals using LoRa".
- c) Planned
 - PG and IST: "Investigating the influence of the radio channel on synchronization and precision of position estimation of the user using the 5G / LTE / NB-IoT radio interfaces";

VT1 members were asked to send information on planned or ongoing collaboration to the VT1 Chairs.

- 6. Joint papers (with acknowledgements to INTERACT)
- a) Published
- Ferreira M.M., Cardoso F.D., Ambroziak S.J., Correia L.M., *Bandwidth Dependence of the Propagation Channel in Circular Metallic BAN Environments*, IEEE Access, vol. 11, pp. 20159-20168, 2023, DOI: 10.1109/ACCESS.2023.3249466.
- Ferreira M.M., Cardoso F.D., Ambroziak S.J., Turbic K., Correia L.M., Mobility's Influence on System
 Loss in Off-Body BAN Scenarios, Joint European Conference on Networks and Communications &
 6G Summit (EuCNC/6G Summit), 7-10 June, Grenoble, France, 2022;
- Ambroziak S.J., Cwalina K.K., Rajchowski P., Cardoso F.D., Ferreira M.M., Correia L.M., A Cross-Polarisation Discrimination Analysis of Off-Body Channels in Passenger Ferryboat Environments, IEEE Access, Vol. 10, pp. 55627-55637, DOI:10.1109/ACCESS.2022.3175009, 2022;

- Ferreira M. M., Cardoso F. D., Ambroziak S.J., Correia L.M., Influence of User Mobility and Antenna Placement on System Loss in B2B Networks, IEEE Access. Vol. 10, pp. 37039-37049, DOI: 10.1109/ACCESS.2022.3163859, 2022.
- Ambroziak S.J., Cardoso F.D., Kosz P., Ferreira M.M., Correia L.M., Analiza zaników szybkozmiennych w radiowych sieciach BAN pracujących w rewerberacyjnym środowisku propagacyjnym, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, No. 4/2022, pp. 505-510, DOI 10.15199/59.2022.4.91, 2022 (in Polish).

b) Planned

- Ferreira M.M., Cardoso F.D., Ambroziak S.J., Särestöniemi M., Turbic K., Correia L.M., Influence of User Mobility on System Loss and Depolarisation in a BAN Indoor Scenario – submitted to IEEE TAP
- Drozdowska M., Ambroziak S.J., Cwalina K.K., Rajchowski P., Cardona N., Channel Impulse Response
 Measurements at mmWave Bands in Offices and Conference Rooms, URSI GASS 2023, Sapporo,
 Japan, 2023 accepted
- Ferreira M.M., Cardoso F.D., Ambroziak S.J., Särestöniemi M., Turbic K., Correia L.M.,
 Depolarisation Model for a BAN Indoor Scenario, European Conference on Networks and
 Communications (EuCNC & 6G Summit), Göteborg (Sweeden), June 2023 accepted
- S.J. Ambroziak, K.K. Cwalina, M.M. Ferreira, F.D. Cardoso, L.M. Correia, System Loss Model for Bodyto-Body Networks in Indoor and Outdoor Environments, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC), Toronto, Canada, Sept. 2023 - submitted
- M.M. Ferreira, F.D. Cardoso, S.J. Ambroziak, M. Särestöniemi, K. Turbic, L.M. Correia, System Loss Model for Body Area Networks in Room Scenarios, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC), Toronto, Canada, Sept. 2023 - submitted

VT1 members were asked to send information on accepted and/or published joint papers to the VT1 Chairs.

7. Liaisons

- IEEE P2933: Standard for Clinical Internet of Things (IoT) Data and Device Interoperability with TIPPSS Trust, Identity, Privacy, Protection, Safety, Security (Konstantinos Katzis, Irene Kilanioti)
- IEEE 802.15 TG6ma: Dependable Body Area Networks (Kamran Sayrafian)
- URSI Commission C: Radiocommunication Systems and Signal Processing (Krzysztof Cwalina)
- EurAAP: Working Group on Propagation (Krzysztof Cwalina)
- 8. White papers
- a) Published
- None.
- b) Planned
- None.

VT1 members were asked to send information on planned and/or published white papers to the VT1 Chairs.

9. Datasets (HA1):

- "System Loss in Body-to-Body BAN in Indoor and Outdoor at 2.45 GHz" PG & IST
- "System Loss in Off-Body BAN in Indoor at 2.45 GHz" PG & IST
- "Two-layer Phantom-Based UWB Channel Measurements for IB2OB Scenarios" UPV

10. Dissemination

During IRACON a LinkedIn group (*IoT - Health Working Group*) has been created. This group is still active and has 72 members. It can be used as a venue to disseminate VT1 activities.

11. Discussion for VTs – requested by the INTERACT Chair

Further discussions were also held regarding STSM and training school initiation, cross-collaborative work with INTRACT participants at other WGs or VTs. Attendants were also encouraged to think about explicit VT1 contributions in the final report of the action.

12. Number of TDs submitted so far: 22

• Feb. 2022, Bologna, Italy: 5 TDs

• Jun. 2022, Lyon, France: 4 TDs

• Sept. 2022, Valencia, Spain: 6 TDs

Jan. 2023, Dubrovnik, Croatia: 3 TDs

May 2023, Barcelona, Spain: 4 TDs

SWG EMF

The group had one session in which 2 TDs related to exposure were presented. The session was a joint session with WG1, and we have one more TD from that group. There were many attendees either on-site in Barcelona and remotely, that actively participated in the meeting.

Regarding EMF TDs, the first TD was related to the exposure prediction using neural networks, and the second one is based on 5G exposure measurements under different traffic assumptions. After the presentation, there was an open discussion about the scope of the group, joint activities and future plans. It is likely to have an EMF-convened session at EuCAP 2024 and a workshop at PIMRC 2024. A LinkedIn page has been also created to visualize the activity of the group.

VT4

In VT4 (Smart Cities and Buildings), together with WG3 (Network Architectures and Protocols), we have discussed temporary documents, with a lot of involvement from the participants. The first TD was TD (23)05007, on "Practical Trial for Low-Energy Effective Jamming on 5G Private Network", by Pawel Skokowski, Michał Kryk, Krzysztof Malon, Piotr Rajchowski, Krzysztof Maslanka and Jan M. Kelner, the second one was TD(23) 05048, on "Study of Band Allocation Policies in IEEE 802.11be Networks with Devices of Different Capabilities", by Daniele Medda, Athanasios lossifides and Periklis Chatzimisios, the third one was on TD(23) 05023, on "Load-Aware Channel Allocation for Rayleigh Fading Wi-Fi HaLow Networks", by Hamid Taramit, Luis Orozco Barbosa, Abdelkrim Haqiq, José Jaime Camacho Escoto and Javier Gomez," and

the last one was TD(23)06078, on "Impact of the Two-Slope Path Loss Model in the Service Quality of 4G and 5G Small Cells", by Rui R. Paulo and Fernando J. Velez. During the discussion slot, there were great discussions, and topics on Interoperability between mobile and wireless communications, including cybersecurity/privacy aspects and Wireless Power Transfer and RF energy harvesting (Reuse/Reduce/Combine, a concept introduced by Guillaume), use cases/scenarios and characterization of applications, PHY aspects/RRM/spectrum management/ MAC sub-layers protocols, and system level performance (from sub-6 GHz to millimetre and sub-THz bands). A paper is being prepared and dates for its production are being shared with VT4 members.

HA1

In the COST INTERACT meeting held in Barcelona, I have briefly announced the upcoming INTERACT ML challenge, which is one of the core activities of HA1. The upcoming challenge will be split into two subchallenges, one focused on PHY layer, the other on NET layer. No further details were announced, since at the time being, everything was still to be decided.

Liaisons Feedback

1. Report from TeamUp5G MSCA ITN/ETN:

LIAISONS (Fernando J. Velez and Ana Garcia Armada) – TeamUp5G is an MSCA ETN/ITN that will finish mid-2023, and includes research from 15 Early Stage Researchers (ESRs) performing research on topics like massive MIMO, cell-free communications, visible light communications, radio resource management (RRM) for ultra-dense networks, functional splitting in the context of Open RAN, ISAC, XR and AR applied to UAVs, spectrum and RRM applied to networks with UAVs, network slicing and carrier aggregation applied to 5G New Radio, to multi-link operation in IEEE 802.11be networks, full-duplex communications. The first Ph.D. student already defended her Ph.D., in the Aarhus University, in February 2023, and the other ones either already delivered or are now delivering their thesis.

2. Carles Anton-Haro 6G-IA:

- Second call for project proposals of the JU-SNS:
 - Now open for submissions. Indicative budget: 132 Meuro (2023 call). Closing date: April 25, 2023.
 - Further information:
 - https://smart-networks.europa.eu/europe-launches-the-second-phase-of-its-6gresearch-and-innovation-programme/
 - https://smart-networks.europa.eu/wp-content/uploads/2022/12/sns_ri_wp_2023-24.pdf
- Info day on JU-SNS Call 2:
 - o Held on Jan 23, 2023.
 - Presentations available from here:
 - https://smart-networks.europa.eu/event/sns-call-for-proposals-2023-informationday/
- ETSI Research Conference: Maximizing the Impact of European 6G Research through Standardization
 - Upcoming event co-organized with ETSI.
 - o Date and place: Feb 6-8, 2023. ETSI-HQ at Sophia-Antipolis (FR)
 - o Registration open
 - o Further information:
 - https://www.etsi.org/events/2130-etsi-research-conference

3. Fredrik Tufvesson

H2020 Reindeer (https://reindeer-project.eu/ including e.g. INTERACT partners Lund University, Ericsson, KU Leuven, TU Graz), investigating the Radioweave concept, an extreme form of distributed massive MIMO, where we equip the environment with many active distributed antennas and coherently process the signals from selected dynamic groups of radio elements. Supports communication, sensing positioning and wireless power transfer. We recently finished one deliverable on distributed large-scale arrays that we aim to report from in the next meetings.

H2020 ITN MINTS, https://b5g-mints.eu/, including e.g. INTERACT partners KU Leuven, Lund University, University Carlos III of Madrid, and Nokia, is now entering its final year. It is a training network with 15 PhD students in the wider area of millimeter wave communication, systems, applications and sensing.

5th Scientific & Technical Meeting

Barcelona, Spain, 23-25 May 2023

Chiara BURATTI
University of Bologna

Laurent CLAVIER
IMT Nord Europe

COST INTERACT

Intelligence-Enabling Radio Communications for Seamless Inclusive Interactions

5th MC and Technical Meeting May 23, 24 and 25, 2023 Castelldefels, Spain

WELCOME!

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Welcome words.

Carles Anton

Welcome words.

Carles Anton

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Any change to the agenda?

Approval of the minutes from Dubrovnik's meeting

ATTENDANCE LISTS (for people on site)

Please sign the attendance list for the day(s) you are present

No reimbursement of travel expenses (for those entitled to) if attendance lists are not duly signed

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Status of the Action and of the current meeting

Number of signatory countries

46 (36 out of 40 COST full members, including 21 ITC)

Number of WG members registered on the website

536

Young Researchers 54%
Gender balance 19% / 80%

COST full members: 36 (ITC: 21)

COST Cooperating Member: 1

COST Partner: 1 International: 5

NNC: 3

Number of MC Members

- 66
- 34 (+7 substitutes)
 attending the meeting
 (33 on site)

One new MC for Ireland Dr. Avishek Nag

People attending the meeting

- 104 on site
- 25⁺ remote

Number of TDs

• 69

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Budget Y2

Work and Budget Plan	Budget
A. COST Networking Tools EUR	
(1) Meetings	129.000,00
(2) Training Schools	14.500,00
(3) Mobility of Researchers and Innovators	7.200,00
(4) Presentation at Conferences organised by Third Parties	
(WIRS)	1.350,00
(5) Dissemination and Communication Products	0,00
(6) Other Expenses Related to Scientific Activities (OERSA)	993,00
B. Total Science Expenditure (sum of (1) to (6))	153.043,00
C. Financial and Scientific Administration and Coordination	
(FSAC) (max. of 15% of B)	22.956,45
Total Grant (B+C)	175.999,45

Budget Y2

Work and Budget Plan	Budget	Top-up	New Budget
A. COST Networking Tools EUR			
(1) Meetings	129.000,00	45.709,35	174.709,35
(2) Training Schools	14.500,00	3.598,00€	18.098,00
(3) Mobility of Researchers and Innovators	7.200,00	8.890,00€	16.090,00
(4) Presentation at Conferences organised by Third Parties			
(WIRS)	1.350,00	7.500,00€	8.850,00
(5) Dissemination and Communication Products	0,00	1.500,00€	1.500,00
(6) Other Expenses Related to Scientific Activities (OERSA)	993,00		993,00
B. Total Science Expenditure (sum of (1) to (6))	153.043,00	67.197,35	220.240,35
C. Financial and Scientific Administration and Coordination	•		
(FSAC) (max. of 15% of B)	22.956,45	10.079,60	33.036,05
Total Grant (B+C)	175.999,45	77.276,95	253.276,40

Dubrovnik Meeting

Work and Budget Plan	Spent	Remaining budget
A. COST Networking Tools EUR		
(1) Meetings	47.649,76	127.059,59
(2) Training Schools		18.098,00
(3) Mobility of Researchers and Innovators		16.090,00
(4) Presentation at Conferences organised by Third		
Parties (WIRS)		8.850,00
(5) Dissemination and Communication Products		1.500,00
(6) Other Expenses Related to Scientific Activities (OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))		172.590,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

4.400 € LOS

43.250 €
Reimbursement
MCM and
WGC

STSM

Work and Budget Plan	Spent	Remaining budget
A. COST Networking Tools EUR	-	
(1) Meetings	47.649,76	127.059,59
(2) Training Schools		18.098,00
(3) Mobility of Researchers and Innovators	4.800,00	11.290,00
(4) Presentation at Conferences organised by Third		
Parties (WIRS)		8.850,00
(5) Dissemination and Communication Products		1.500,00
(6) Other Expenses Related to Scientific Activities		
(OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))		167.790,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

4 x 1.200 € STSM

Expected Expenses

	Expected	Remaining
Work and Budget Plan	Expenses	budget
A. COST Networking Tools EUR		
(1) Meetings	58.300,00	68.759,59
(2) Training Schools	18.000,00	98,00
(3) Mobility of Researchers and Innovators	3.600,00	7.690,00
(4) Presentation at Conferences organised by Third		
Parties (WIRS)	850,00	8.000,00
(5) Dissemination and Communication Products	2.520,00	-1.020,00
(6) Other Expenses Related to Scientific Activities		
(OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))	83.270,00	84.520,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

Barcelona Meeting

Morls and Dudget Dlan	Expected	Remaining
Work and Budget Plan	Expenses	budget
A. COST Networking Tools EUR		
(1) Meetings	58.300,00	68.759,59
(2) Training Schools		98,00
(3) Mobility of Researchers and Innovators		7.690,00
(4) Presentation at Conferences organised by Third		
Parties (WIRS)		8.000,00
(5) Dissemination and Communication Products		-1.020,00
(6) Other Expenses Related to Scientific Activities		
(OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))		84.520,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

2.200€

LOS

56.100 €

Reimbursement

MCM and

WGC

Training Schools

Work and Budget Plan	Expected Expenses	Remaining budget
A. COST Networking Tools EUR		
(1) Meetings	58.300,00	68.759,59
(2) Training Schools	18.000,00	98,00
(3) Mobility of Researchers and Innovators		7.690,00
(4) Presentation at Conferences organised by Third		
Parties (WIRS)		8.000,00
(5) Dissemination and Communication Products		-1.020,00
(6) Other Expenses Related to Scientific Activities (OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))		84.520,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

12.000 € DolCom

6.000 € ESoA

STSM

Marile and Decident Diam	Expected	Remaining		
Work and Budget Plan	Expenses	budget		
A. COST Networking Tools EUR				
(1) Meetings	58.300,00	68.759,59		
(2) Training Schools	18.000,00	98,00		3 x
(3) Mobility of Researchers and Innovators	3.600,00	7.690,00		1.200 €
(4) Presentation at Conferences organised by Third				STSM
Parties (WIRS)		8.000,00		
(5) Dissemination and Communication Products		-1.020,00		
(6) Other Expenses Related to Scientific Activities				
(OERSA)		993,00		
B. Total Science Expenditure (sum of (1) to (6))		84.520,59		
C. Financial and Scientific Administration and				
Coordination (FSAC) (max. of 15% of B)				

ITC Grants

	Expected	Remaining
Work and Budget Plan	Expenses	budget
A. COST Networking Tools EUR		
(1) Meetings	58.300,00	68.759,59
(2) Training Schools	18.000,00	98,00
(3) Mobility of Researchers and Innovators	3,600,00	7.690,00
(4) Presentation at Conferences organised by Third Parties (WIRS)	850,00	8.000,00
(5) Dissemination and Communication Products		-1.020,00
(6) Other Expenses Related to Scientific Activities (OERSA)		993,00
B. Total Science Expenditure (sum of (1) to (6))		84.520,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

ITC Grants

	Expected	Remaining		
Work and Budget Plan	Expenses	budget		
A. COST Networking Tools EUR				
(1) Meetings	58.300,00	68.759,59		
(2) Training Schools	18.000,00	98,00		
(3) Mobility of Researchers and Innovators	3,600,00	7.690,00		
(4) Presentation at Conferences organised by Third Parties (WIRS)	850,00	8.000,00		
(5) Dissemination and Communication Products	2.520,00	-1.020,00		Video
(6) Other Expenses Related to Scientific Activities (OERSA)		993,00		
B. Total Science Expenditure (sum of (1) to (6))		84.520,59		
C. Financial and Scientific Administration and				
Coordination (FSAC) (max. of 15% of B)				

Reallocated Budget

Manda and David and Diam	Remaining	Reallocated
Work and Budget Plan	budget	budget
A. COST Networking Tools EUR		
(1) Meetings	68.759,59	60.739,59
(2) Training Schools	98,00	7.098,00
(3) Mobility of Researchers and Innovators	7.690,00	7.690,00
(4) Presentation at Conferences organised by Third Parties		
(WIRS)	8.000,00	8.000,00
(5) Dissemination and Communication Products	-1.020,00	0,00
(6) Other Expenses Related to Scientific Activities (OERSA)	993,00	993,00
B. Total Science Expenditure (sum of (1) to (6))	84.520,59	84.520,59
C. Financial and Scientific Administration and		
Coordination (FSAC) (max. of 15% of B)		

Formal approval from the MC Members

+ 7.000

+ 1.020

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

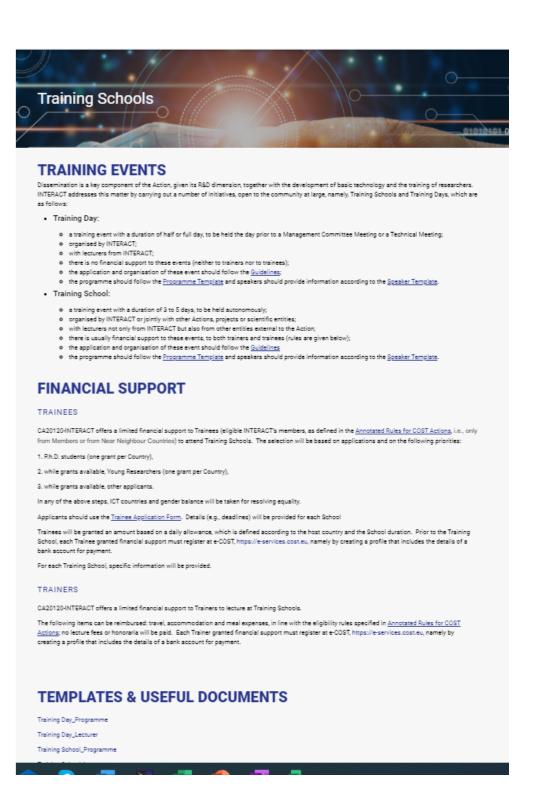
11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons



Training Days - General:

- the Call will be launched 3 months prior to the meeting;
- the deadline for proposals is 2 months prior to the meeting;
- meetings will start on Tuesday or Wednesday, so that Training Days can be held on a weekday.

Training School - General:

- the Call has been launched by the beginning of January;
- the deadline for proposals was by mid February;
- the evaluation result was announced by early March.

https://interactca20120.org/meetings-events/training-schools

Training Days in 2023:

- Barcelona:
 - Recent Advances in Data Engineering for Networking, Engin Zeydan and Josep Mangues, (CTTC).
- Poznan:
 - Call open (email to be sent next week).
 - Deadline for proposals on June 30th.

Training Schools in 2023:

- 26-29 June 2023
 - DolCom 2023 Summer School & Workshop on Radio Communications in the Dolomites.
 - Application to travel grants by May 26th
 - Registration by May 31st
 - Information is available at the website.
- 4-8 Sep. 2023
 - Short-Range Radio Propagation: Theory, Models and Applications.
 - Information will be available soon at the website.

And what else?

- 2023 May 26th: apply to a travel grant to attend the DolCom Training School
- 2023 May 31st: register to the DolCom Training School
- 2023 June 30th: submit a proposal for the Training Day prior to the Sep. meeting.

But still:

Let us know what topics you would be interested in having in a Training Event.

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

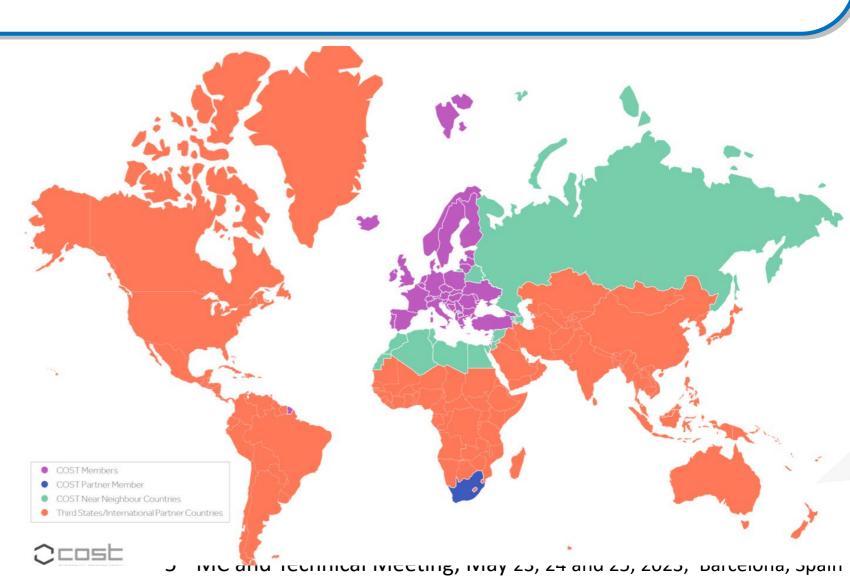
11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)


- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

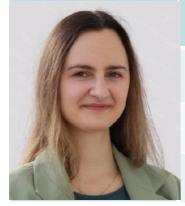
SHORT TERM SCIENTIFIC MISSIONS (STSMs)

STSMs are exchange visits aimed at supporting individual mobility, strengthening existing networks and fostering collaboration between researchers. The aim [...] is to contribute to the scientific objectives of a COST Action [...] by allowing scientists to go to an institution or lab in another COST country to foster collaboration, to learn a new technique or to take measurements using instruments and/ or methods not available in their own institution/ lab.

- <u>BOTH</u> the home and host institutions <u>MUST</u> be <u>INTERACT partners</u> (easy fix)
- Home: COST full members, cooperating member, or Near Neighbouring Countries (NNC).
- Details: https://interactca20120.org/grants/stsm/

THE STORY SO FAR: GRANT PERIOD 1 & 2 STSMs

François Rottenberg (KU Leuven, Belgium)


<u>Title</u>: Smart precoder design to minimize energy consumption in 5G and beyond communication systems

Dates: 9/06/2022 to 24/06/2022

Host: Centre Tecnològic de Telecomunicacions de Catalunya (Spain)

WG2

WG1

Monika Drozdowska (Technical University of Valencia, Spain)

<u>Title</u>: Measurements in Gdańsk University of Technology

Dates: 26/09/2022 to 30/09/2022

Host: Gdańsk University of Technology (Poland)

Mohammed Mallik (U Lille, France)

<u>Title</u>: Evaluation of the <u>Electromagnetic Field Exposure Map</u> using the VENERIS simulation tool

Dates: 17/01/2023 to 28/01/2023

Host: Universidad Politécnica de Cartagena (Spain)

VT1-SWGEMF

WG2

Vukan Ninkovic (University of Novi Sad, Serbia)

<u>Title</u>: Design and Implementation of autoencoder-based codes for Beyond 5G Communication Systems

Dates: 29/01/2023 to 10/02/2023

Host: Centre Tecnològic de Telecomunicacions de Catalunya (Spain)

THE STORY SO FAR: GRANT PERIOD 1 & 2 STSMs

Adam Samorzewski (Poznan U, Poland)

<u>Title</u>: Sustainable use of resources in wireless systems powered by Renewable Energy Sources

Dates: 13/02/2023 to 15/03/2023

Host: Ghent University (Belgium)

WG3

WG3/VT2

Valentina Timcenko (Pupin I., Serbia)

Title: Attack identification and classification in V2X scenarios

Dates: 08/03/2023 to 31/03/2023

Host: Centre Tecnològic de Telecomunicacions de Catalunya (Spain)

Jesús Argote (INSA Lyon, France)

Title: RF harvester realization for powering ultra-low power wake-up radios in the context of the IoT

Dates: 03/04/2023 to 08/05/2023

Host: RWTH (Germany)

VT3/VT4

WG3 (VT2, WG1)

Salim Janji (Poznan U., Poland)

<u>Title</u>: Resource Allocation for UAV-Enabled Networks with Beamforming Capabilities

Dates: 30/04/2023 to 30/05/2023

Host: U. Bologna (Italy)

THE STORY SO FAR: GRANT PERIOD 1 & 2 STSMs

Emanuele Peschiera (Katholiek Universiteit Leuven, Belgium)

Title: Space-Domain Lean Transmissions for Cell-Free Massive Multiple-Input Multiple-Output

Dates: 15/05/2023 to 28/07/2023

Host: Centre Tecnològic de Telecomunicacions de Cataluinya (Spain)

WG2

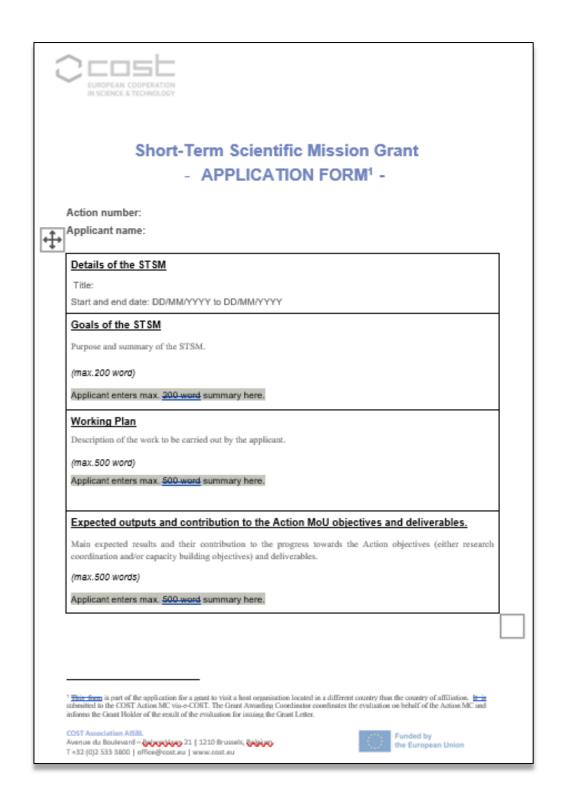
WG?

YOU (YOUR INSTITUTION)

<u>Title</u>: Your topic

<u>Dates</u>: Your dates

Host: Your host



SHORT TERM SCIENTIFIC MISSIONS (STSMs)

STSM request handled via the e-COST platform:

http://www.cost.eu/STSM

- You only need:
 - Grant application (what)
 - Invitation Letter (host)
 - Letter of Support (home)
 - Motivation Letter (why)
 - Applicant's CV (who)
- Applications: submit at least 1 month before mission starts.
- Activities: entirety within a single Grant Period (up to Oct 31).
- Grants:
 - Up to 1.200 euro / grant, according to duration & budget availability.
 - Extra budget allocated: 12 STSM grants planned for Grant Period 2
 - 7 awarded so far -> at least <u>5 STSMs available until October 2023</u>

SHORT TERM SCIENTIFIC MISSIONS – BEST PRACTICES

- Read the evaluation criteria STSM webpage.
- All STSMS must have tangible outcomes: publications, code, datasets,...
 - TD(s) in upcoming INTERACT meetings: a MUST
 - Submission of joint conference papers: very RECOMMENDED
 - Submission of joint journal articles: GREAT!
- Make sure your workplan is well defined and realistic.
- Cleary identify alignment with overall scientific objective(s) of INTERACT and with WGs/VTs/HAs
- Identify support offered by the host institution:
 - e.g., labs, equipment, know-how, simulators, technician support, workplace,..
- Emphasize synergies host-home institutions.
- Justify need for researcher mobility
- Likely to trigger new collaborations home host Institutions?

EUROPEAN COOPERATION
IN SCIENCE
AND TECHNOLOGY

EURO-COST

III. STSM WORKFLOW

The Granted STSM entitled "Attack identification and classification in V2X scenarios" was carefully planned and organized to provide, in the defined time, the most productive output possible. As being an all-encompassing mini-project, the goal was to proceed with all the necessary project phases, starting from the initial consideration and definition of the realistic objectives, available computing, and environmental resources.

The focus was on the ns-3 5G-LENA and NR V2X modules which inherited all the features of ns-3 network simulator, including the full stack and end-to-end capabilities, the multi-band (sub 7 GHz and millimeter-wave bands) and multi-radio access technology characteristics (WiFi/WiGig), the ability to build hybrid HW/SW prototypes, while being in line with the development and standardization of the 3GPP NR technology. The research phases and activities are provided in Table I:

Valentina Timčenko, PhD
Research Associate
The Institute Mihajlo Pupin
University of Belgrade
Volgina 15, 11060 Belgrade, Serbia
valentina.timcenko@pupin.rs
Web: www.pupin.rs

CA20120 TD(23) 05020 Barcelona, Spain May 22-25, 2023

lecomunicacions de Catalunya, Barcelona, Spain

Phase 2

TABLE I. V2X Security Research Activities

Getting to know the ns-3 network simulator environment and the OpenSim research unit activities in the area of the development of 5G-LENA and 5G NR V2X ns-3 network simulator modules

Installation of ns-3 environment packages, supporting software, and analysis tools

Study of the implemented characteristics of the ns-3 PHY and MAC layers developed features, and encompassed attributes

Presentation and discussion on the cybersecurity concerns related to the area of the V2X, including potential vulnerabilities, security gaps, and possible countermeasures

Use of the GitLab repository, and creation of a particular working branch of code, with up-to-date ns-3 V2X module versions and tags. The focus of this part of the activity is to learn to obtain efficient ns-3 V2X code building, debugging, and committing

Proper code generation that would reflect the defined regular nodes and attacker nodes' activities, their correlation, positioning, and other

The initial collection of performance difference results, with the goal to deeper explore the possibilities of the attack behavior integration to the V2X

Coding, debugging, and Git operations on the defined testing ns-3 code examples enhanced

with the simple forms of the DoS (Denial of Service) attacks

The use of the QTCreator and SQL Database software.

Intensive diving into NR-V2X examples

Phase 4 The full definition and exploration of the security scenarios and the parameters

Running the simulations, collecting results over various simulation campaigns, and results

class

GRANTS FOR ATTENDING CONFERENCES FOR INSTITUTIONS FROM INCLUSIVE TARGET COUNTRIES (ITC grants)

The aim of ITC Conference Grants is to support PhD students and Early Career Investigators (ECI) from INTERACT institutions located in Inclusive Target Countries (ITC) to attend international science and technology-related conferences not specifically organized by the COST Action.

Inclusive Target Countries (as of March'22):

Albania, Bosnia and Herzegovina, Bulgaria, Cyprus, Czech Republic, Estonia, Croatia, Greece, Hungary, Lithuania, Latvia, Malta, Moldova, Montenegro, Poland, Portugal, Romania, Slovenia, Slovakia, Republic of North Macedonia, Republic of Serbia and Turkey.

- Virtual or physical attendance (annotated rules).
- Grants:
 - Up to 1000 euro (increased)/ grant to partly cover travel expenses
 - Extra budget allocated: 5 ITC grants planned for Grant Period 2
 - 2 awarded so far -> at least 3 ITC grants available until October 2023
- <u>Details</u>: <u>https://interactca20120.org/grants/itc-conference-grants</u>

VISIBILITY BOOSTER GRANTS (VBG)

To support activities leading to a strong visibility of the INTERACT COST action.

To support initiatives aimed to <u>significantly</u> increase the <u>visibility/raise</u> the profile of <u>female</u> researchers in the research community and beyond.

- In conference/events organized by THIRD parties:
 - MC/Technical meetings, training days/schools, other events organized by INTERACT excluded.
- <u>Physical</u> attendance only
- Open to <u>all researchers</u> enrolled in INTERACT (must be)
 - Priority to young, female researchers, and regular participants to INTERACT meetings (ceteris paribus).
- Evaluated in monthly batches: within first week
- Grants:
 - Indicatively 1000 euro / grant (partly cover travel expenses)
 - 5 VBG grants planned for Grant Period 2: 5 batches to go (June...October)
- Details: https://interactca20120.org/grants/xxxx

Looking forward to receiving your STSM / ITCG/ VBG applications !!!

~6 STSM grants
3 ITC grants
5 VBG grants

await your activities until October 31, 2023

If interested, apply soon!!

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

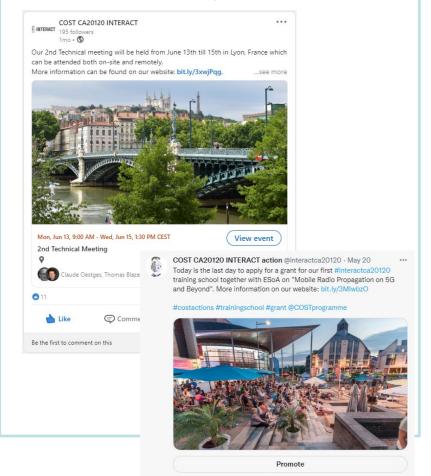
11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

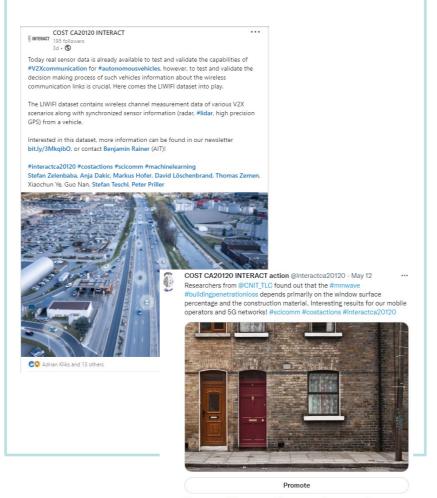
- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons



PLEASE FOLLOW AND SHARE!!! #interactca20120

• Linkedin (https://www.linkedin.com/company/interactca20120): 387 followers

EVENT-BASED


- Announcements/reminder meetings, TTSs, etc.
- Call for STSMs, TTSs, grants, etc.
- Newsletters, leaflet

SCIENCE COMM

WEEKLY


- Selected TDs from WGs
- White papers
- Joint papers

DATASETS


WEEKLY

- Short description of dataset, link to paper, contacting author
- Starting week 27/28

TESTIMONIALS

- STSMs
- TTSs: participants w/ grant

- Available on various platforms (YT, anchor, spotify)
- Host: Prof. Adrian Kliks (Poznan University of Technology)
- Episodes
 - 1. Laurent Clavier
 - 2. Conchi Pardo
 - 3. Thomas Zemen
 - 4. Ana Garcia Armada

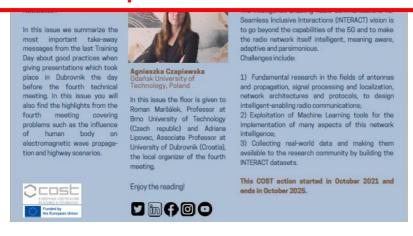
Newsletter

4th issue

Editor: Agnieszka Czapiewska

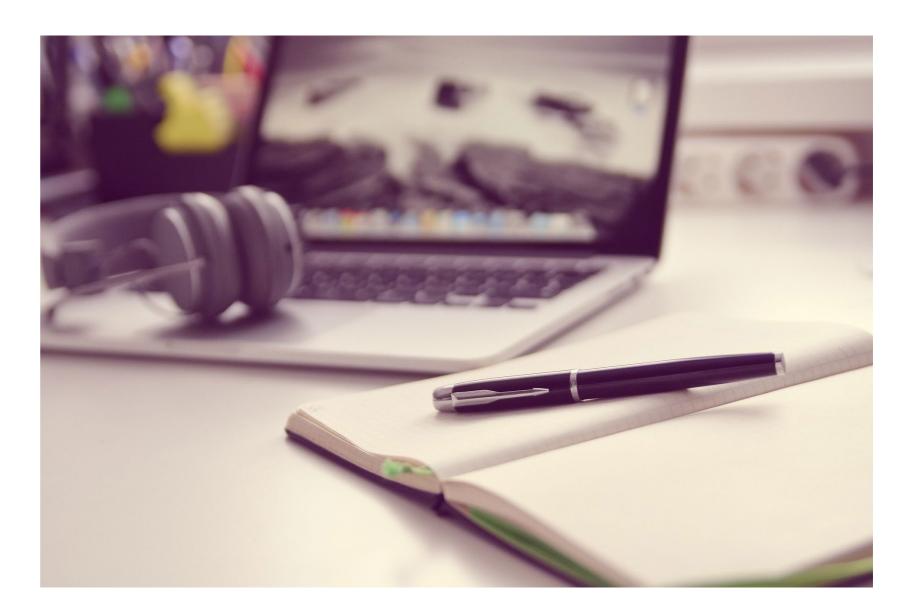
Leaflet

Update available Also in print-friendly version


https://bit.ly/3DQgzHb

SCICOMM MEETING: TUESDAY 23/5 AT 17:30 in auditorium B6

Proposal: first selection, confirm during/after meeting



- Today a promo video will be shot
- 5 min video
 - Short introduction on our action (Alister Burr)
 - Three interviews
 - WG Chair (Yang Miao)
 - STSM (Mohammed Mallik)
 - WIRS initiative (Sana Salous)
 - Recorded during coffee breaks or right before/after lunch
- Some general footages will be shot during the day

- Liaisons
- Organized special sessions/workshops
 → SINCE START OF THE ACTION!
- → Email to: <u>margot.deruyck@ugent.be</u>

- 40th Anniversary of COST actions in telecommunications
 - Lisbon (PT) January 2024 Organised by Prof. Luis M. Correia
 - COST Actions: 207, 231, 259, 273, 2100, IC1004, CA15104, CA20120
 - Dedicated pages on our current website
 - Testimonials: https://interactca20120.org/anniversary-testimonials/
 - Memories: https://interactca20120.org/anniversary-memories/

- Looking for
 - Testimony of your view about these action series (video/sentence/text)
 - Photos or videos of meetings you attend (proper credit will be given)
- → Email contributions to <u>vera.almeida@inov.pt</u>
- → For testimony: add a photo of yourself (with name and affiliation)

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Main updates:

- ML-based competition (call for interest)
- Dataset session in Castelldefels

ML-based competition

- Student competition on a ML-task to be executed on one of the COST dataset
- Call for interest look for emails at the end of the meeting
- Dataset TBD
- Further details TBD

Dataset session in Castelldefels

- During coffee breaks
- Chance to learn about dataset from authors and discuss collaborations

Dataset session in Castelldefels

Schedule

	Booth 1 (poster + tv)	Booth 2 (poster)
Tue 23 morning	Konstantin M. (Oulu)	Faruk P. (TU Wien)
Tue 23 afternoon	Paolo D. + Marco M. (CTTC)	Free slot
Wed 24 morning	Mate B. (Huawei) + Marco S. (Bologna)	Ana M. (CTTC)
Wed 24 afternoon	Free slot	Free slot

Tuesday Morning Session 1

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

Thursday (11am)

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Core group meeting 02/06 – 14:00 CET.

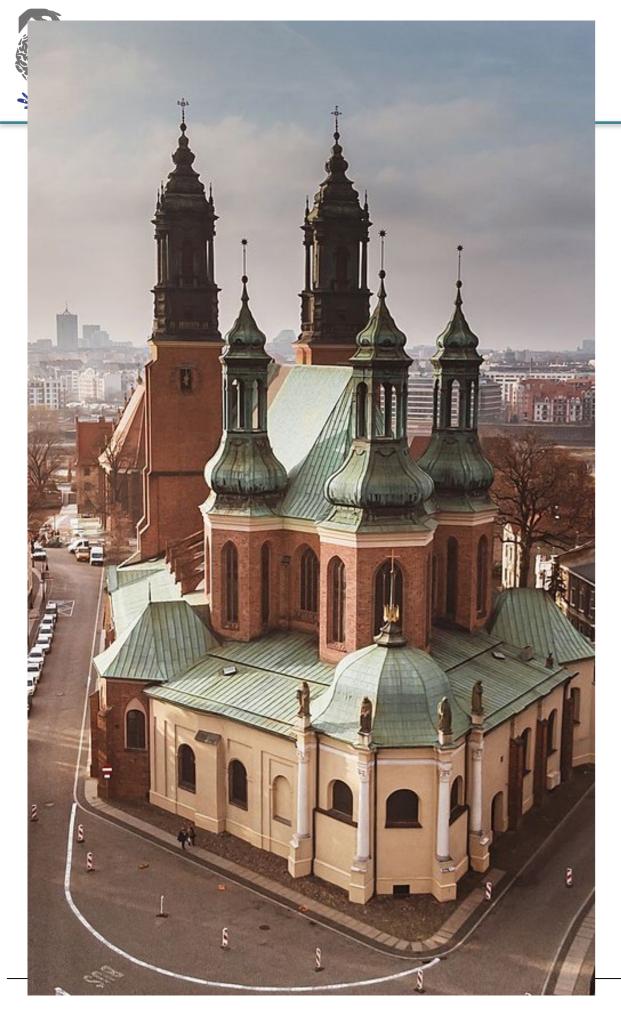
Upcoming Meetings

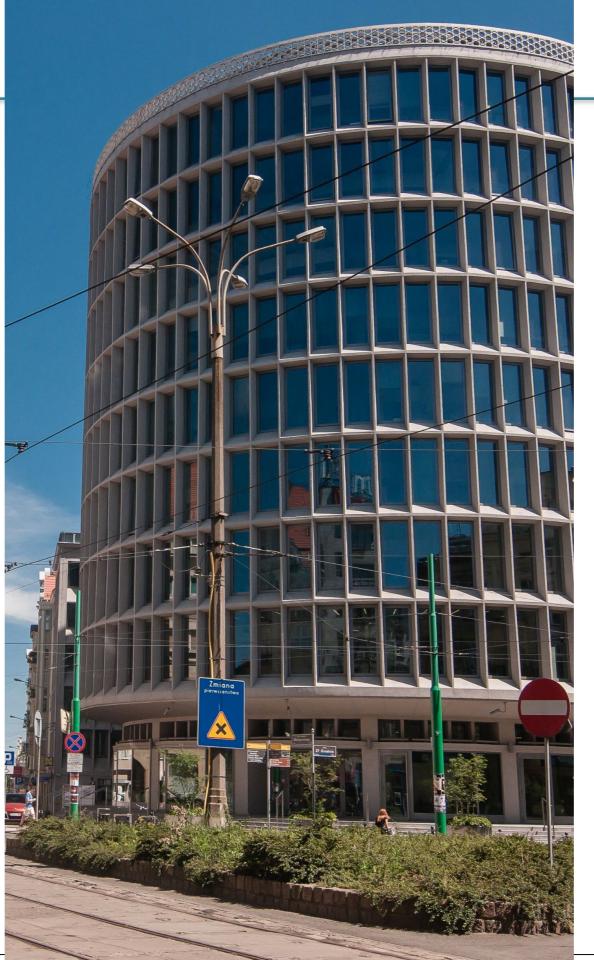
Sixth MC meeting and technical meeting

Sep. 11-14, 2023 – Poznan

Seventh MC meeting and technical meeting

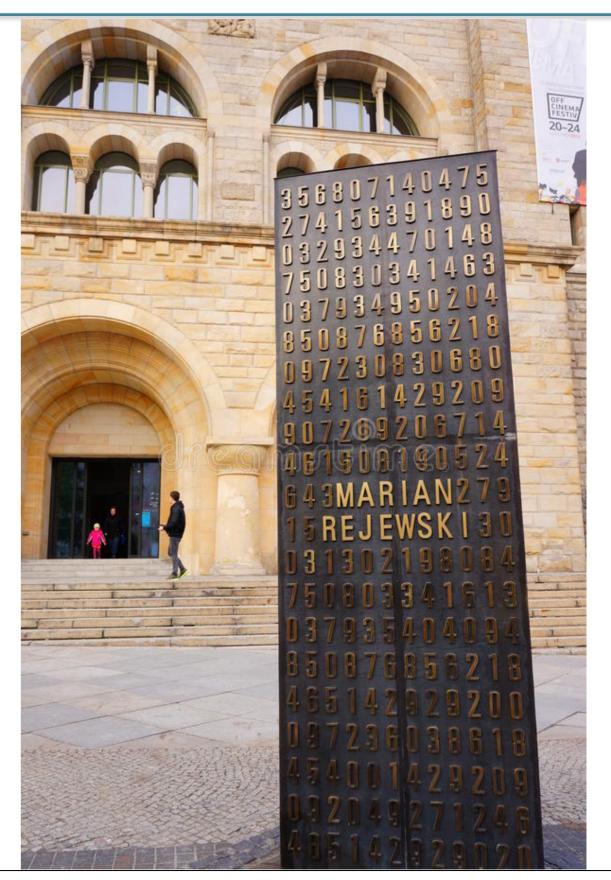
Jan. 22-25, 2024 (special one) – Lisbon

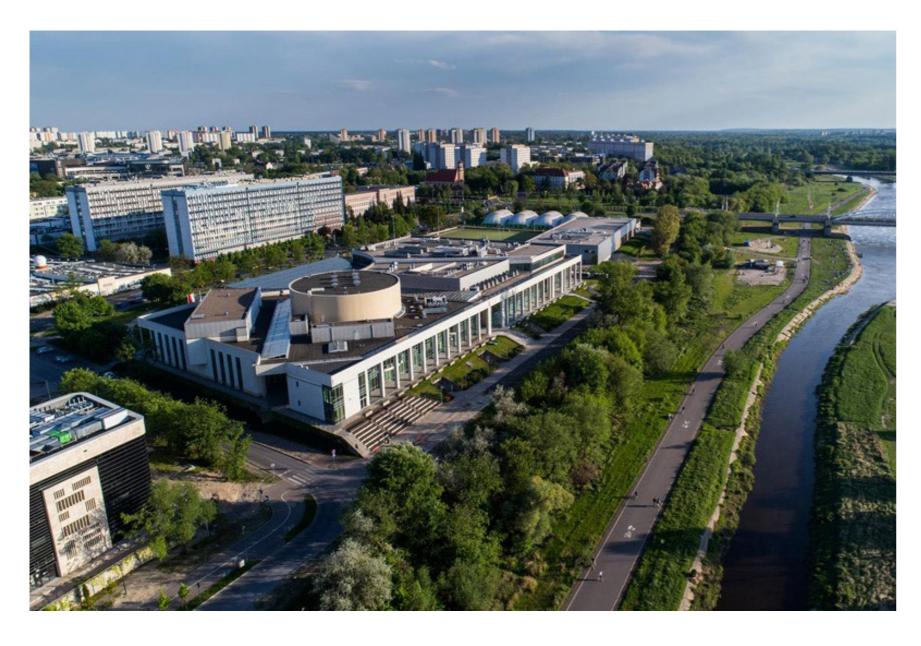

Eighth (and following) MC meeting and technical meeting


Open to proposals

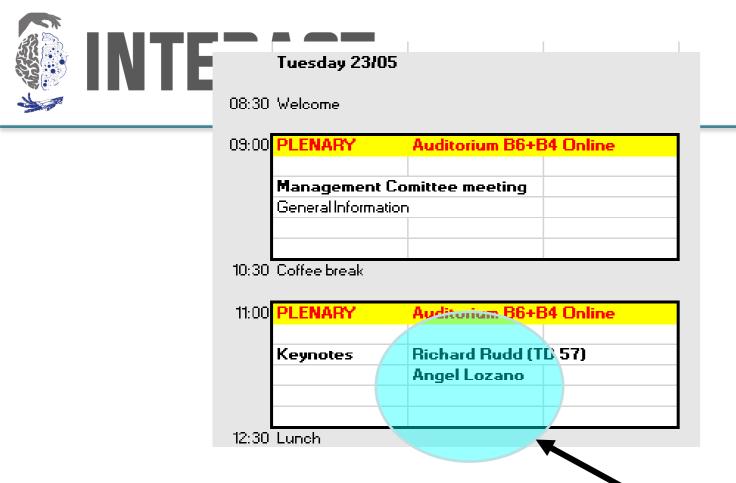
Some information about Poznan

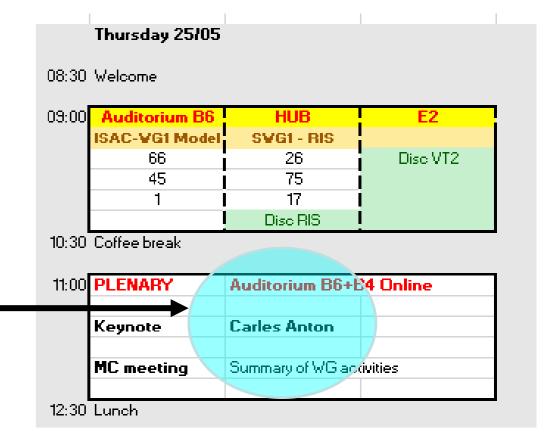
5th MC and Technical Meeting, May 23, 24 and 25, 2023, Barcelona, Spain





City of greenness




Back to this meeting

					BARCELONA N	MEETING	/ 22-25 Mag 202	23						
	M J 2210F		T J 2210F					re				Th J 2510	_	
	Monday 22/05		Tuesday 23/05				Vednesday 24/0	Jə				Thursday 25/0	อ	
		08:30	Welcome			08:30	Welcome				08:30	Welcome		
			el elli ell		B1 B 1	ا مممما						F		E0.
		09:00	PLENARY	Auditorium B6-	B4 Unline	09:00	Auditorium B6 VG1-VG2 Perf		E2 VT4-VG3 Alloc.	E3 YT1	09:00	ISAU-WGI	HUB SWG1 - RIS	E2
			Management C	omittee meeting	1		43	30	7	4		1	26	Disc VT2
			General Informatio				5 I	62	48	9		66	75	Ì
							46	18	23	41		45	17	!
		10-20	Coffee break			10-20	76 I Coffee break		78	54	10.20	Coffee break	Disc RIS (Ctd)	
		10.30	Collee bleak			10.50	Collee bleak				10.50	Collectican		
		11:00	PLENARY	Auditorium B6	B4 Online	11:00	Auditorium B6		E2	E3	11:00	PLENARY	Auditorium B6	•B4 Online
			V	M:_L. IP. 172	TD E31			WG2 - Mel. Acc.		EMF-WG1		L		
			Keynotes	Richard Rudd (Angel Lozano	เกอเโ		29 2	4 0 73	3 37	14 15		Kegnote	Carles Anton	
				Aliger Cozalio			12	68	Disc WG3 (ctd)	52		MC meeting	Summary of WG a	ctivities
							39	25	<u> </u>	Disc EMF				
		12:30	Lunch			12:30	Lunch				12:30	Lunch		_
13-30	Welcome	13:30		Video	VIRS									
		_		Recording		_								
14:00	Auditorium B6	14:00	Auditorium B6		E2		Auditorium B6	HUB	E2	E3				
	Training		WG1 - Mes.		WG3 - Res. Man.			WG2-ISAC - Loc						
	Session		6	27	47		34 11	19	55	DISC VT4				
			63 77	10 53	33 51		28	69 61	84 60					
			16	59	65		36	83	- 00					
15:30	Coffee break	15:30	Coffee break			15:30	Coffee break							
امم مم		,, ,, ,				امميا								
16:00	Auditorium B6 Training	16:00	Auditorium B6 VT2-VG1 -	HUB ISAC-WG2	E2 ¥G3-YT2	16:00	Auditorium B6	HUB	E2	E3				
	Session		31	44	72		Disc WG1	Disc WG2	Disc VT1	Disc VT3				
			8	22	74		I							
			38	42	20		Disc THz	Disc ISAC	Disc EMF (Ctd)					
17:30		17:30	32 Newsletter	70	Disc VG3	17:30	Disc RIS							
Auditorium B6 HUB E2			17:30											
18:00	G7	18:30	Performance			18:00	Departure to so	cial event and	dinner					
	SC													
	meeting													
40.00														

And in the last plenary
Don't miss it!

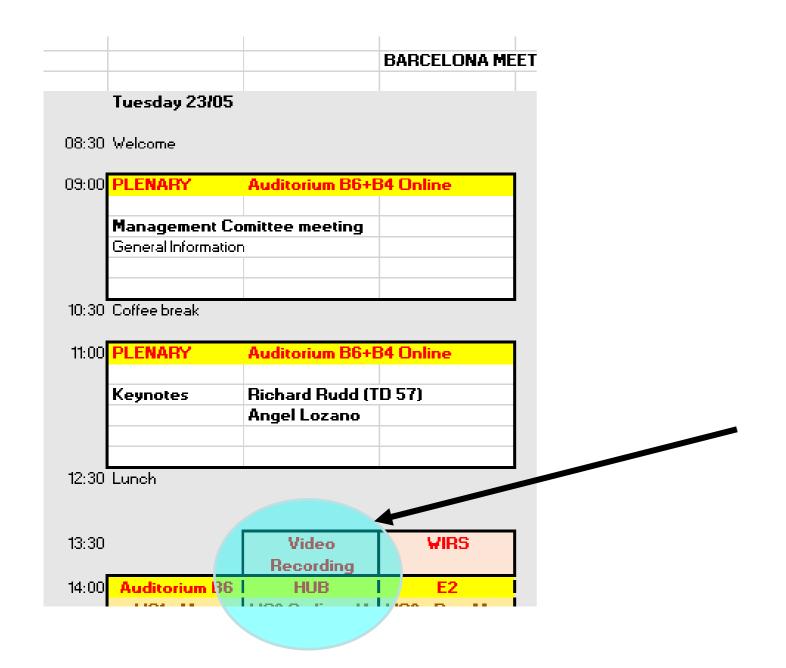
At 11:00... Keynotes

11:00 – 11:30 Richard Rudd, Plum Consulting.

Propagation modelling in the ITU-R: challenges and evolution

11:30 – 12:30 Angel Lozano, UPF Barcelona.

Near-Field MIMO: An Old Theory Up to New Tricks


And an extra keynote Thursday at 11:00...

Thursday, 11:00 – 11:30 Carles Anton

"Key Strategies for 6G Networks and Services: the 6G SNS Industry Association's Vision"

Video recording - Today

You could meet them sometimes today, SMILE!

Margot will tell you more.

uesday 23/05

08:30 Welcome

09:00	PLENARY	Auditorium B6+E	34 Online			
	Management Comittee meeting					
	General Information	İ				

10:30 Coffee break

11:00	PLENARY	Auditorium B6+B4 Online				
	Keynotes	Richard Rudd (T	(TD 57)			
		Angel Lozano				

12:30 Lunch

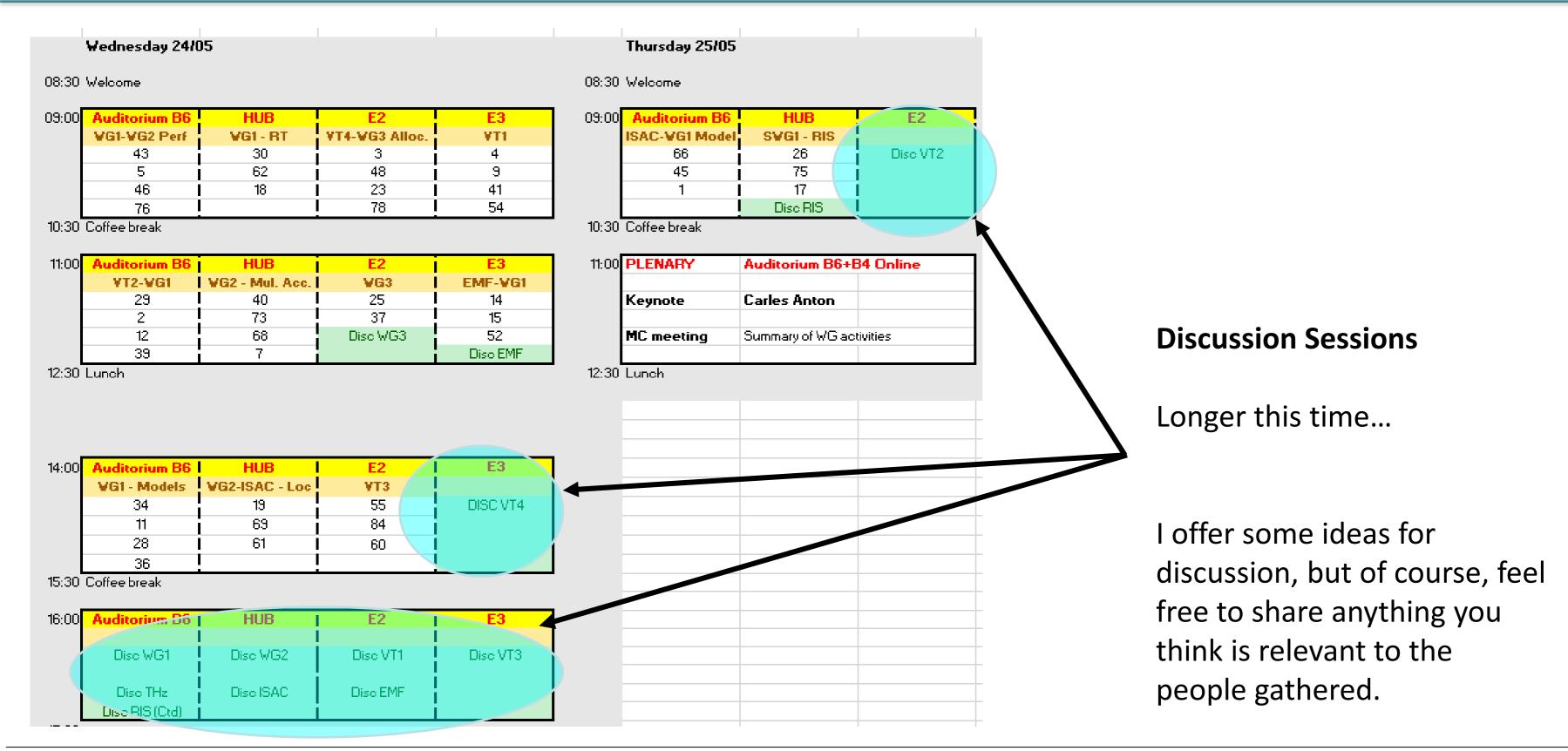
13:30		Video	WIRS
		Recording	
14:00	Auditorium B6	HUB	E2
	VG1 - Mes.	VG2 Coding - NA	VG3 - Res. Mar.
	6	27	47
	63	10	33
	77	53	49
	16	59	65

15:30 Coffee break

16:00	Auditorium B6	HUB		E2	
	VT2-VG1 - Space	ISAC-VG	2	¥G3-¥T2	
	31	44		72	
	8	22	 	ΙΉ	
	38	42		20	
	32	71			
17:30	Newsletter			WIRS	
	Auditorium B6	HUB		E2	
18.30	Darfarmanaa				

Women in Radio Science meeting

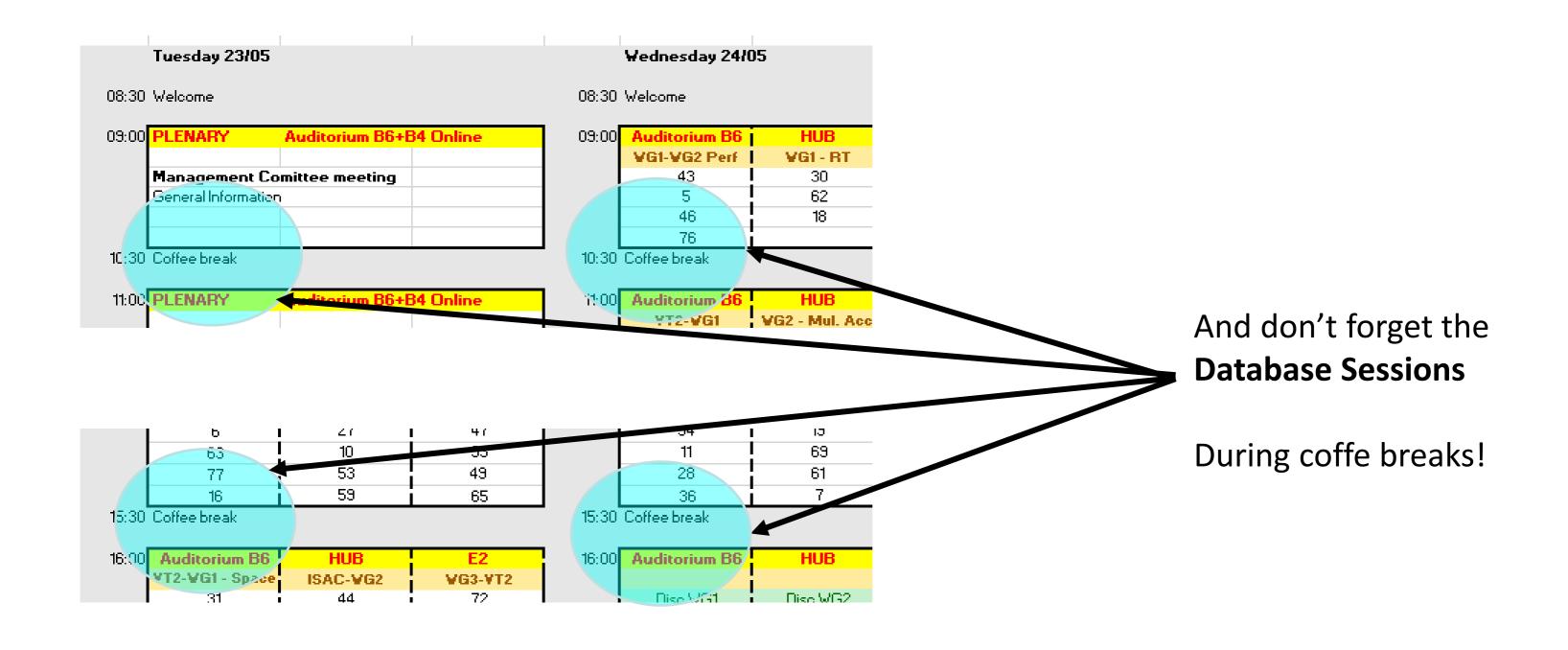
Today 1:30pm – possible extension at 5:30 if needed


What is expected:

Tell us the objectives and the means.

Make a short paragraph for dissemination

Carles has told you about financial support



In addition to traditional points (training school, training day, STSMs...), I suggest the following discussions

- WG1 a white paper is under preparation. What contribution will INTERACT make to channel modelling?
 - And what with sWG THz
 - And what with sWG RIS
- **WG2** Start thinking about White paper on *novel physical layer technologies and localization algorithms for future wireless networks* (planned Mid June 2024). The scope can be adjusted. Perhaps it could be a good time to think about it and about the editorial committee.
- WG3 the White paper on novel network architectures and protocols for future wireless networks is planned in October 2025 so we have time (so only half a session) but time as come to put the seeds in the heads.
- All WGs and verticals in Mid October 2024 we planned a deliverable "disciplinary solutions to the research challenges (preliminary draft of the final report)" I encourage you to already think about how we should build this deliverable.
- **VTs**: I would like VTs take time to discuss what could be done in their specific verticals, if we can support a few actions to encourage some STSMs for instance on pluri-disciplinary topics related to VTs... And even if no white paper is planned, how they would like to structure their contribution in the "final report".

Plenary resumes on

Thursday at 11:00 am after the early morning session

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

At 11:00... Keynotes

11:00 – 11:30 Richard Rudd, Plum Consulting.

Propagation modelling in the ITU-R: challenges and evolution

11:30 – 12:30 Angel Lozano, UPF Barcelona.

Near-Field MIMO: An Old Theory Up to New Tricks

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Enjoy the sessions.

Enjoyed the sessions?

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

Keynote Thursday at 11:00...

Thursday, 11:00 – 11:30 Carles Anton

"Key Strategies for 6G Networks and Services: the 6G SNS Industry Association's Vision"

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

WG1 Vittorio Degli-Esposti, Mate Boban
SWG mmW and THz channel sounding Wei Fan, Diego Dupleich
SWG RIS Di Renzo, Joonas Kokkoniemi

WG2 Ana Garcia Amada, Alister Burr SWG ISAC Yang Miao, Carsten Smeenk

WG3 Hamed Hamadi, Konstantin Mikhaylov

VT1 Kamran Sayrafian, Slawomir Ambroziak SVT1 EMF exposure Conchi Garcia Pardo, Wout Joseph

VT2 Thomas Blazek, Adrian Kliks

VT3 Golsa Ghiaasi, Raheeb Muzaffar

VT4 Periklis Chatzimisios, Fernando Velez

- 1. Welcome words
- 2. Adoption of the Agenda
- 3. Status of the Action and of the current meeting
- 4. Report from the Grant Holder
- 5. Training
- 6. STSM & more
- 7. Dissemination
- 8. Data sets
- 9. Next meetings and this meeting

Tuesday Session 2

14. Plenary talks

11:00 - Richard Rudd, TD 57

11:30 - Angel Lozano

Tuesday afternoon till Thursday 10:30am

15. Sessions

- 16. Plenary Talk: Carles Anton
- 17. Feedbacks from Working Group Chairs
- 18. Feedbacks from Liaisons

- H2020 Reindeer Fredrik Tufvesson
- EU-ITN MINTS Fredrik Tufvesson
- 5G DU-Volution Alister Burr
- 5G... Alister Burr
- 6G-IA (SNS) Carles Anton
- TeamUp5G (MSCA ETN/ITN) Fernando J. Velez and Ana Garcia Armada
- ETSI ISG for Terahertz Communications (THZ) Mate Boban, Thomas Kuerner
- DETERMINISTIC6G (SNS) Raheeb Muzaffar
- PEPR 5G (France Plan de relance) Laurent Clavier

Any other Business?

AP	WHAT	WHO	WHOM	WHEN
1	Submit reimbursement forms	Those entitled to	e-cost	Before 09/06
2	Send Minutes of Group Meetings	Group Chairs	Chair + Secretary	Before 09/06
3	Apply to Travel Grants for DolCom	Those interested	INTERACT Website	Before 26/05
4	Register to DolCom	Those interested	INTERACT Website	Before 09/06
5	Send Training Day proposals	Those interested	Training Chair (K. Cichon)	Before 30/06
6	Publications (Joint)	Authors	Secretary	When accepted
7	Liaisons, special sessions/workshops	Organizers	Dissemination chair (M. Deruyck)	When done with short summary
8	Call for interest DataBase Competition	Competitors		
9	Send STSM / ITCG / VBG applications	Those interested	e-cost +Grant Chair (C. Anton)	Open call
10	CORE Group meeting	SC members + WG chairs	Remote meeting	02/06, 2pm CET

Thank you!

See you in Poznan